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Idea of the Proof I

We generate two sequences:

an =
n∑

k=0

(
n

k

)2(n + k

k

)2

cn,k . (1)

We use the following notation to abbreviate {an}, i.e.,
the first sequence:

cn,k =
n∑

m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(n
m

)(n+m
m

) . (2)

and

bn =
n∑

k=0

(
n

k

)2(n + k

k

)2

. (3)
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Idea of the proof II.

Then we have

anbn−1 − an−1bn =
6

n3
(4)

where an, and bn are defined as (1), and (3).

It follows that

det

([
an an−1
bn bn−1

])
= anbn−1 − an−1bn = 6

n3
,

an
bn
−→ ζ(3) as n −→∞.

⇒ ζ(3)− an
bn

=
∞∑

k=n+1

6

k3bkbk−1
. (5)
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Idea of the proof III.

The ratio of the two sequences converges to ζ(3), then our
goal is to modify the two sequences to satisfy the irrationality
criterion.

Irrationality Criterion

Corollary. If there exists δ > 0 and infinite pairs pn, qn ∈
Z and (pn, qn) = 1 such that∣∣∣∣α− pn

qn

∣∣∣∣ < 1

q1+δn

, (6)

then α ∈ R is irrational.

Actually, it’s an if and only if, but for our goal, we only need
one direction.
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Idea of the proof IV.

Need to show δ > 0.
Next, define two new sequences: pn = 2d3

nan, qn = 2d3
nbn

where bn ∼ (1 +
√

2)4n := αn, pn, qn ∈ Z If we don’t define pn,
qn, and we only use:

ζ(3)− an
bn

= O

(
1

b2n

)
, then by IC ⇒ 1

b2n
<

1

b1+δn

⇒ 0 < δ < 1, and we are done?

Since an is not integer, so we can’t directly invoke irrationality
criterion (IC). That’s why we make it become an integer:
pn := 2d3

nan where dn = lcm(1, 2, 3, ..., n). But, we don’t want

to change the estimation of
∣∣∣ζ(3)− an

bn

∣∣∣, so, we also did this to

bn, and obtain: qn := 2d3
nbn.
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Q: Why we can’t just use O
(

1
b2n

)
in IC?

Now, we can use the irrationality criterion, we also notice the
second reason why we can’t directly use 1

b1+δ
n

on the r.h.s. of

the IC, but 1
q1+δ
n

instead: From the criterion, if the following is

true then ζ(3) is irrational:∣∣∣∣ζ(3)− pn
qn

∣∣∣∣ =

∣∣∣∣ζ(3)− an
bn

∣∣∣∣ = O

(
1

b2n

)
<

1

q1+δn

=
1

(2d3
nbn)1+δ

⇒ 1

b2n
<

1

(2d3
nbn)1+δ

It follows: (1) if we take δ = 1 the inequality isn’t valid, (2)
0 < δ < 1 which is what we need (and we can do a further
estimation to find out the exact maximum value of δ = 0.080....
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Idea of the proof V.

∣∣∣∣ζ(3)− pn
qn

∣∣∣∣ =

∣∣∣∣ζ(3)− an
bn

∣∣∣∣ = O

(
1

b2n

)
= O(α−2n).

Take

0 < δ =
logα− 3

logα + 3
= 0.080529....

We obtain

logα =
3(1 + δ)

1− δ
⇒ α−1+δ = e−3(1+δ)

⇒ α−2α1+δ = e−3(1+δ)

When n is large enough, we can have the following inequality:

⇒ (αn2d3
n )−(1+δ) =

1

q1+δn

> α−2n =
1

(αne3n)1+δ
= O

(
1

b2n

)
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Idea of the proof V.
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Idea of the proof V.

Therefore, this δ is the maximum of all possible values to make
the inequality be true. It follows that∣∣∣∣ζ(3)− pn

qn

∣∣∣∣ < 1

q1+δn

and this implies ζ(3) is irrational.
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Thank you!
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