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1. Introduction.

The main two tools Hardy used are Continued Fraction and the cir-
cular dissection method (which is an extension from the Farey’s Circle
that introduced in Chapter III of [1]). The first question we can ask
is why continued fraction is related to rotation of a circle? This will
be answered in the section 2.5 (almost everything before section 2.5 is
for preparing the foundation for section 2.5). But, to understand the
relationship between the two tools, and how to apply them to prove
our main theorem (in section 4), it’s good know that the main idea of
all the following works is to build up a way to approximate irrational
by rationals.

• Step 1: To introduce two main tools (continued fraction, and
the circular dissection method) which is done in section 2.
• Step 2: Need to show the set S is dense on a circle with unit

circumstance which is done in section 3.
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• Step 3: Need to show the set S is uniformly distributed1 which
is done in section 4.

where the set S =
{
nθ|n ∈ Z+, θ ∈ ¬Q

}
. If we don’t know the detail

of step 2. we still can prove step 3, but since our step 3 is extended
the picture of the rotation of circle that was used to prove the claim
of step 2. Additionally, if we don’t know the difference between S is
dense in (0, 1) and S is equidistributed in (0, 1), it might also be a bit
harder to appreciate the proof of equidistribution.

2. Set-up.
2.1. Some ideas for initiation.
The initial goal is to build up a way to approximate irrationals by ra-
tionals.
Suppose ξ′ is given where ξ′ ∈ R. Since what’s more interesting is the
fractional part, so in the following we rewrite ξ′ as ξ, where ξ represents
the fraction part of ξ′, i.e., ξ mod 1.
Our goal is to approximate ξ by r = p

q
where p and q are integers,

(p, q) = 1, so r is irreducible. Since the rational are dense in the
continuum, there are rationals as near as we wish to any ξ that can
eliminate it to approach zero. In other words, given ξ > 0, we have

⇒|r − ξ| =
∣∣∣∣pq − ξ

∣∣∣∣ ≤ ξ

One observation about the possible candidates in an ap-
proximation.
⇒Suppose we want to approximate a real number α = α′ mod 1 by
a rational number m

n
, and m, n are integers. We can find a number

such that |m
n
− α| < ε, ∀ε > 0. But, we may think that’s probably not

that interesting, because what’s really interesting is could we find an n
which is sufficiently small but it’s still can get a good approximation?
We can consider {

1

n
,

2

n
,

3

n
, ...

n

n

}
as n is sufficiently large, we can get our approximation within the above
sequence.

Therefore, we can ask the first question that why continued fraction
is used to prove the main theorem? Moreover, this question can be
rephrase to a more deeper question:“The question we can ask is
how rapidly can we approximate to ξ?” Furthermore, this deeper
question can be quantified in the following two aspects:

1i.e., equidistributed
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• Given ξ and ε > 0, how complex must p
q

be? In other

words, how large q must be to secure an approximation
with the measure of accuracy ε?
• How small can the positive number ε be, if we have the

upper bound for q?

2.2. The Starting Point.

To understand why continued fraction can be used to prove the
main theorem, we need to define the so-called “rotation of a circle”
or “Farey’s circle” first. Then based on this notion, we can extend it
to continued fraction that to draw each new level of the approximation
of a continued fraction on Farey’s circle by using the same algorithm
(which is also called the circular method by Hardy).

To define a Farey’s circle, we need a notion of Farey’s series2.

2.3. Farey’s Circle.

Definition. Farey series Fn of order n is the ascending series
of irreducible fractions between 0, and 1 whose denominators do
not exceed n.
⇒ h

k
∈ Fn if 0 ≤ h ≤ k ≤ n, (h, k) = 1.

For example,

Fn =

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
.

The following are some important properties of Farey series:

2All the details can be found in CH. III of [1], here I just summarized the
necessary results for our purpose.
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• If h
k

and h′

k′
are two successive terms of Fn, then kh′−hk′ =

1.
This can be proved by using induction. We just need to
suppose it’s true for (n− 1)
• If h

k
, h′′

k′′
, and h′

k′
are three successive terms of Fn, then

h′′

k′′
= h+h′

k+k′
.

• In the other way around, if h
k
, h′

k′
are two successive terms

of Fn, then the mediant h+h′

k+k′
of h

k
and h′

k′
falls in the

interval (
h

k
,
h′

k′

)
Next, we can consider a circle C of unit circumstance (not a unit

circle), and we choose an arbitrary point O of the unit circumference
as the representative of 0 (zero). Then we can write any real number
x by Px, in a counter-clockwise orientation. Hence, we can see that O
represent all the integers, and the length of the arc form O to Px is the
fraction part after x − [x], i.e. x]textmod1. This arc has a name that
it’s called Farey’s arc.

Farey’s Dissection
For example, in the above set-up, we already investigate an example as
n = 5. In Fn, there are ten comma in the sequence, so we know we have
ten mediants. We build a new sequence formed by all the mediants of
F5 as follows:

M5 =

{
1

6
,
2

9
,
2

7
,
3

8
,
3

7
,
4

7
,
5

8
,
5

7
,
7

9
,
5

6

}
.
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Therefore, by using GeoGebra, one can draw all the elements in M5

on C, and call it a Farey’s dissection of C. The following is an example:

The property of this Mn sequence are as follows:

• all the mediants in Mn are not in Fn
• the first and last mediants are

1

n+ 1
,

n

n+ 1

• each point on the circle C is called a Farey point

Therefore, we can derive the Theorem 35 in Hardy’s book:

Theorem 1. In the Farey dissection of order n, when n > 1, each part
of the arc which contains the representation of h

k
has a length between

1

k(2n− 1)
,

1

k(n+ 1)
.

By using Hardy’s words: “The dissection, in fact has a certain uni-
formity which explains its importance”. Actually, it’s an analogue idea
of dissection – Banach-Tarski Paradox3. Or its less paradoxical prob-
lem that the Tarski’s circle-squaring problem: suppose we take a
disc in the Euclidean plane, cut it into finitely many pieces,
and reassemble all pieces so as to obtain a square with exactly

3A result of selection axiom.
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the same area. The idea of solving this problem is the by applying
the essence of Euclidean algorithm in a geometrical way to dissect a
disc in to finitely many strips. The same essence here, we are thinking
about Farey’s dissection, but this time we want to be more efficient to
approximate an irrational number. And we have a geometrical picture
in mind that we want to dissect this circle C (that which has a unit
circumstance) by using the smallest number of steps.

Furthermore, after we derive the continued fraction (in the next
two subsections), we can use it to improve our Theorem 1, or
the Theorem 35 in Hardy’s book as follows:
Suppose there exists p, q, where 0 < q ≤ n. From Farey’s series,
we obtain the following result:∣∣∣∣pq − ξ

∣∣∣∣ ≤ 1

q(n+ 1)
<

1

q2
.

The we multiply both sides by q:

|p− ξq| < 1

q

which means we divide the circle C into q pieces. After q steps,
we can back to the starting point.

2.4. Farey’s Dissection.
Question: Because of this clue, it leads us to think about Euclidean
algorithm–how can we modify this algorithm to give us the most effi-
cient way to find a convergent sequence in this dissection goal?
Answer: The answer of this question is given by Hardy in Section 10.6
(Page 134[1]). However, the original typesetting is not easy to follow,
and it’s important to know the derivation so that we can understand
why in section 4, we are going to use continued fraction and its result
to prove the equidistribution. Therefore, I reconstructed the derivation
as following:

Given any rational fraction a0
a1

, in lowest terms so that (a0, a1) = 1
and a1 > 0, we apply the Euclidean Algorithm as follows:
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a0 = a1q0 + a2, 0 < a2 < a1
a1 = a2q1 + a3, 0 < a3 < a2
a2 = a3q2 + a4, 0 < a4 < a3

aj−1 = ajqj−1 + aj+1, 0 < aj+1 < aj
aj = aj+1qj

Then suppose we let λi = ai
ai+1

where 0 ≤ i ≤ j

⇒ λi = qi +
1

λi+1

,

λj = qj, 0 ≤ i ≤ j − 1.

Hence suppose we take the first two of these equations, those for
which i = 0, and i = 1, and eliminate λ1, so we obtain

λ0 = q0 +
1

q1 + 1
λ2

Likewise, we can replace λ2, and λ3....
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In summary, we just derived the continued fraction from Eu-
clidean Algorithm, and it’s due to the property of Euclidean Al-
gorithm, we know that this is the most efficient way to do the
circular method of dissection:

λ0 =
q0
q1

= q0 +
1

q1 + 1
q2+...+

1(
qj−1+

1
qj

)
.

In our purpose, for λ0 our goal is to do the most efficient circular
dissection, so we only need to focus on the fractional part:

λ0 mod 1 =
1

λ1
Hence, the first point on the circle C can be denoted as p1 = 1

λ1
.

Furthermore, this fraction equally divided the circle C which
has a unit circumstance into λ1 pieces. Also, after λ1 we can
back to the starting point.

For the second level of precision, we consider to use λ2:

λ0 mod 1 =
1

λ1
=

1

q1 + 1
λ2

= q0 +
λ2

q1λ2 + 1

Hence, the first point on the circle C can be denoted as
p2 = λ2

λ2q2+1
. Furthermore, this fraction equally divided the circle

C which has a unit circumstance into λ2q2 + 1 pieces. Also, the
worst case is (λ2, λ2q2 + 1) = 1, so even this is the case, we are
sure that after λ2 · (λ2q2 + 1) steps, we can back to the starting
point.

Likewise, in the third level, we have:

λ0 mod 1 =
1

λ1
=

1

q1 + 1
q2+

1
λ3

= q0 +
1 + λ3q2

λ3q1q2 + q1 + λ3

It follows that, the first point on the circle C can be denoted as
p3 = λ3q2+1

λ3q1q2+q1+λ3
. Furthermore, this fraction equally divided the

circle C which has a unit circumstance into λ2q2+1 pieces. Also,
the worst case is (λ2q2 + 1, λ3q1q2 + q1 + λ3) = 1, so even this is
the case, we are sure that after (λ2q2 + 1) · (λ3q1q2 + q1 + λ3)
steps, we can back to the starting point.
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2.5. Continued Fraction Expansion.
The following is a well-known result which is one of the most important
direct result of continued fraction that can help us to improve the result
in the previous section.

Fundamental Recurrence Relation

Theorem 2. Let pn and qn be the convergents. Then

det

([
pn pn−1
qn qn−1

])
= pnqn−1 − pn−1qn = (−1)n, for all n ≥ 0.

Proof. We can prove this statement by mathematical induction.
First of all, we check the base case, as n = 0, and n = 1:

p0q−1 − p−1q0 = 1(1)− 0(0) = 1 = (−1)0

which is okay.
For n = 1, we obtain:

p1q0 − p0q1 = (a1p0 + p−1)(0)− 1(a1q0 + q1)

= 0− 1(0 + 1) = −1 = −(1)1.

Both case are valid.
Thirdly, we assume it holds for all n ≤ k, so we nee to show this
is true as n = k + 1.

pk+1qk − pkqk+1 = (ak+1pk + pk−1)qk − pk(ak+1qk + qk−1)

= ak+1pkqk + pk−1qk − ak+1pkqk − pkqk−1
= pk−1qk − pkqk−1

= −(pkqk−1 − pk − 1qk)

= −(−1)k

= (−1)k+1.

This completes the proof. �

Now, we divide both sides by qn · qn−1, let x = pn−1

qn−1
. Then

we can know that we have found a smaller bound by using
continued fraction, compared to Dirichlet Theorem4.

4A proof is attached in the appendix for self-contained reason
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Continued Fraction Expansion

This method converges in a running time of order log n (the
last section of our proof is an example for showing this time
complexity): ∣∣∣∣x− pn

qn

∣∣∣∣ ≤ 1

qn−1qn
.

3. To prove S is dense on C

According to Hardy’s book[1], Dirichlet’s Theorem 201 states that:
Given any set of real numbers θ1, θ2, θ3, ...θk, we can make nθ1, nθ2, ..., nθk
all differs from integers by as small as possible. (θk, k ∈ Z is a fraction
of an irrational number)

Suppose we are given two numbers θ and α, the question we can ask
is: Can we find an integer n to make nθ − α is nearly an integer? If
θ is a rational number, and θ = a

b
, where a, b are integers, and a

b
is

irreducible, then

(nθ) = nθ − [nθ]

(nθ) ∈ K =

{
0

b
,
1

b
,
2

b
, ...,

b− 1

b

}
and we need to think these points are evenly divided the circle C (a
circle with unit circumstance as in previous section).
Hence, if 0 < α < 1, and α is not one of elements of K, then∣∣∣∣rb − α

∣∣∣∣ , r = 0, 1, 2, 3, ..., b

has a positive minimum µ, i.e.,

µ = min

{∣∣∣∣rb − α
∣∣∣∣ , r = 0, 1, 2, 3, ..., b

}
and nθ − α (θ is an irrational number, but we can think it as a frac-
tion part of an irrational number due to the following reason) cannot
differ from an integer less than µ. Since all points are on C, this rep-
resentation automatically rejects integers; in other words, 0 and 1 are
represented by the same point of the circle, thus in general nθ = (nθ).

Next, we need to show:
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Theorem 3. (nθ) is dense in C, i.e., (0, 1) where
n = 1, 2, 3, ..., and θ is an irrational number.

• There is no nθ pint can fall at 0, and no two of nθ points
coincide on the circle C.
• As introduced in the abstract, the set S is collecting all
nθ, and has a derived set S ′.

Proof. To say S is dense on the circle C is to say every α belongs to the
derived set S ′. If α ∈ S, but α 6∈ S, there is an interval I1 = (α−t, α+t),
t ∈ R. Then ∀x ∈ I1, x 6∈ S, if x 6= α, then ∃x ∈ I1, x 6∈ S, x 6∈ S ′, if
x 6= α. Hence, to prove the theorem, it is sufficient to prove that every
α ∈ S, or α 6∈ S ′. And, we are going to prove this by contradiction.
If not, ∃Ii = (α − δ, α + δ′), δ > 0, δ′ > 0 where ∀x ∈ Ii, x 6∈ S. We
denote the greatest interval among all Ii.

Hence, if α has I(α) (that ∀x ∈ I(α), x 6∈ S)
then α− θ has I(α)
α− 2θ has I(α− 2θ)
α− 3θ has I(α− 3θ)
............................................
α− nθ has I(α− nθ).
However, we are on a circle and no two of these intervals (I(α − nθ))
can coincide (since θ ∈ ¬Q), and no two of these intervals can overlap,
since overlapping of two intervals constitute together a larger interval.
But, the length of circumstance of C is finite, so it cannot contain
infinitely many of I(α − nθ). This contradiction shows that there can
be no interval I(α). Thus, we have proven that α ∈ S or α ∈ S ′, and
so S is dense on the circle C, i.e., in (0, 1). �

4. To prove S is equidistributed on C

The idea of defining the terminology: “equidistribution.” A
set of points Pn in (0, 1) is uniformly distributed if every subinterval
of (0, 1) contains its appropriate amount of points. The following is a
formal (quantified) definition:
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Definition. Suppose I = (α, β), β, and α ∈ Ra. If nI =
# of points Pi which fall in I and nI

n
→ β − α whatever I when

n→∞, then the set is equidistributed.

aHardy denotes I both for the interval and its length (e.g. I = (0, I)), but I
decided to use (α−β) to denote the length of the interval I = (α, β), α, β ∈ R
instead. This is especially important in this section when we start to prove
the main theorem of this essay.

The following is the main theorem of this essay that we need to prove:

Theorem 4. If θ is irrational, then the points (nθ) are uniformly
distributed in (0, 1).

The following proof is based on the tools we developed in the previ-
ous sections: Continued fraction, and circular method (and the what
we did in Step 2 can also be seen as an simpler example of the use of
circular method).

Proof. It’s extremely important to always keep in mind for do-
ing the following argument that M is not only positive, but
also an integer, and so as all the numerators: c, d,M, and w.
(Again, they’re all positive integers.)

Suppose we choose an integer M > 05 to be the inverse smallest
scale on the circle C (a circle with unit circumstance)6. We let the
value of this scale is quantified by a positive real number ε in a way
that

1

M
<

1

2
ε <

1

2
,

the one-half means we at most consider the largest step of the circular
method should be less than a half of the length of the circumstance of
C, i.e., (0, 1). Or, in other words, due to the inequality, we at least can
have three steps to back to the starting point O.

Suppose av is the denominator of one of the convergent of θ.

5It’s extremely important to remember that M is not only positive, but also an
integer, and so as all the numerators: c, d,M, and w.

6In other words, if we take the inverse of M , then it tells us how many evenly
small pieces of the length of the circumstance of the circle C we can get.
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To assemble the notion of continued fraction into this proof, we im-
pose one more constraint on this smallest scale on the circle C by
assuming that we have

(1) av ≤
n

M
< av+1

Now, we assume the scale is fixed, so M is fixed. We take n → ∞,
then by equation (1), we know that v →∞. It follows that according
to our derivation in section 2.4, the v-th level convergent of a contin-
ued fraction of θ is av, and av → ∞, and so as av+1 → ∞. Also, by
multiplying the inverse smallest scale M with a coefficient 3 we obtain:

(2) 3M

(
1

av

)
<

1

2

This mysterious factor 3 will be useful in the inequality (16).
Next, let r be the positive integer, and we divide n in the following
way:

(3) n = rav + s, 0 ≤ s < av,

it follows

(4)
n

av
=

(
r +

s

av

)
< (r + 1)

which gives

(5) M ≤ n

av
=

(
r +

s

av

)
< (r + 1)

and

(6) M < (r + 1).

Furthermore,

(7) M ≤ r ≤ n

av
.

The next thing we need to do is to take two fractional part of two
real number and called them α, and β, and α < β. Then, we can
get an interval I = (α, β). Then, let’s use three more restrictions to
constraints this interval as follows.
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Next, we choose two integers c and d, such that c < d, and this
implies

(8)
c

av
<

d

av
.

One must also assume that α ≤ c < d ≤ β, thus

(9) α ≤ c

av
<

d

av
β.

Now, we impose the third constraint:

c− 1

av
≤ α ≤ c

av

and
d

av
≤ β <

d+ 1

av
.

Therefore, we derive the following inequalities:

(10)
c− 1

av
≤ α ≤ c

av
<

d

av
≤ β <

d+ 1

av

If take n→∞ (we already knew then v →∞, and the denominator
of v-th level of the continued fraction of θ also goes to infinity, and
av →∞), then (d− c)→∞.

The next important step is to consider points of

w

av
,

w is an integer. Furthermore, we impose a constraint on points of w
av

in the following inequalities:

c+M ≤ w ≤ d−M.

Therefore,

(11)

(
c

av
+
M

av

)
≤ w

av
≤
(
d

av
− M

av

)
and we can do a bit more on this:
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(12) α ≤ c

av
<

c

av
+
M

av
≤ w

av
≤ d

av
− M

av
<

d

av
≤ β

and then we can go even further to make the above inequalities more
longer:

(13)
c− 1

av
< α ≤ c

av
<

c

av
+
M

av
≤ w

av
≤ d

av
− M

av
<

d

av
≤ β <

d+ 1

av

and finally the complete form (all the numbers are points drew on
the unit circumstance of circle C):

(14)

0 =
0

av
≤ c− 1

av
< α ≤ c

av
<

c

av
+
M

av
≤ w

av
≤ d

av
−M
av

<
d

av
≤ β <

d+ 1

av
≤ av − 1

av

Now, let’s denote the interval

(15) I ′ =

(
α +

M

av
, β − M

av

)
.

If a point P ′ ∈ I, and the Euclidean distance d(P ′, P ) < M
av

,

then for sure P ∈ I = (α, β).

Next, recall the nθ in the claim of the main theorem, here let’s take
the following points where (n ≥ m)

mθv = m
bv
av

where m, bv, av are integers, and θv is the v-th convergent of the con-
tinued fraction of θ.
Now, once all of these points are drawn on the circle C, for sure they
will coincide with w

av
, since it goes to infinity, and always mod 1. But,

here what’s more interesting is to look at the first av number of these
points. And they form a set as follows:

K =

{
0

av
,

1

av
,

2

av
, ...,

av − 1

av
.

}
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Also, please remember that all of these elements of the set K are drawn
like we did for Farey’s points on the circle C.
I also knew the number

m
bv
av

( mod 1) ∈
{

0

av
,

1

av
, ...,

av − 1

av

}
:= K ′.

Moreover, we also knew the number ofm bv
av

inK ′ isN := d−c−2M+17,

i.e., there are N many of m bv
av

mod 1 points lie in the interval I ′.

In other words, there are N many w
av

points lie in the interval I ′ =(
α + M

av
, β − M

av

)
.

Since we have already known

n

av
≥ r,

hence we also can know

n ≥ rav.

Also, for sure from (14), we can see that it’s obvious that an ≥ N =
d− c− 2M + 1, so we have

n ≥ rav ≥ rN.

Therefore, there are at least rN many of the first n points of m bv
av

are
located in I ′.

Since
c− 1

av
< α < β <

d+ 1

av
,

thus

|β − α| = β − α < d− c+ 2

av
and hence

⇒ r·N > r·(av·(β−α)−2M−1) ≥ r·(av·(β−α)−2M−M) = r·(av·(β−α)−3M)

(the last inequality is due to M > 0, and as I reminded in the first line
of this proof that M is an integer.)

It follows that

(16) rN > r · (av · (β − α)− 3M) = (n− s)(β − α)− 3Mr.

7Here we can see the advantage to make all the numerators to be integers, because
we can easily count the number of points between two bounds.
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Because we also know that in equation (3) we have 0 ≤ s < ar, so we
can write down the following inequalities:

(17) s(β − α) ≤ s < sav ≤
n

M
<

1

2
ε · n

On the other hand, we have r ≤ n
av

, so we can derive:

(18) 3Mr ≤ 3Mr

av
<

1

2
ε · n.

Plug inequalities (17) and (18) into (16):

(19)

rN >
(
(n− s)(β − α)− 3Mr

)
=
(
n(β − α)− s(β − α)− 3Mr

)
> n(β−α)−1

2
εn−1

2
εn.

That is

(20) rN > n
(
(β − α)− ε

)
, N := d− c− 2M + 1.

where n ≥ m, and we are especially interested the case when n
is sufficiently large.

Now, finally we can apply the result we derived in section 2.5 (the
continued fraction expansion form fundamental recurrence relation).
Since from section 2.5, we have:

|θ − θv| <
1

qvqv+1

<
1

q2v
.

From (1), We also knew that
n

av
≥M.

Therefore,

⇒ |mθ −mθv| ≤ |nθ − nθv| <
n

qvqv+1

<
M

av

Now, recall the boxed result of P ∈ I = (α, β), and equation (15):

since mθv ∈ I ′ and

(21) d(P, Pv) = d(mθ,mθv) <
M

qv
,

hence
P = mθ ∈ I.

Denote N ′ := the number of P = mθ ∈ I where n ≥ m.
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Please recall that rN := the first n points of m bv
av
∈ I ′ = the number

of Pv = mθv = w
av
∈ I ′ and rN > n((β − α)− ε).

Then, because we already knew the number of points of Pv in I ′ is
the number of points of mθv = w

av
= rN > n((β − α) − ε), and now

we have (21), so by (15) we know the number of P = mθ ∈ I, like Pv,
must also be at least greater than n((β − α)− ε).

rN > n((β − α)− ε)⇒ N ′ > n((β − α)− ε)

⇒ lim
n→∞

inf
nI
n
> (β − α)− ε

where nI = all the points in the interval I. Since ε is arbitrarily chosen,
so it can be chosen arbitrarily small. Hence,

⇒ lim
n→∞

inf
nI
n
≥ (β − α).

Likewise, if we denote J as the complement of interval I on the circle
C (a circle with unit circumstance that we used to put all the points
on it), i.e., J has a length 1− (β−α). Then, with the same procedure
as above, we derive the other direction that:

⇒ lim
n→∞

sup
nJ
n
≥ 1− (β − α),

where nJ := n− nI .
Thus,

⇒ lim
n→∞

sup
n− nI
n

= 1− lim
n→∞

sup
nI
n
≥ 1− (β − α),

⇒ lim
n→∞

sup
nI
n
≤ (β − α).

Hence, we have both

lim
n→∞

sup
nI
n
≤ (β − α),

and
lim
n→∞

inf
nI
n
≥ (β − α),

It follows that
nI
n
→ (β − α),

then by definition, this completes the proof.

�
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6. Appendix.
6.1. Dirichlet Theorem.

To prove Dirichlet Theorem, we need the following definition.

Denote bxc as the integral part of a real number x, and (x) :=
x− bxc as the fractional part of x.

Dirichlet Theorem

Theorem 5. Let ξ′ ∈ R be given. If ξ′ is real, then there exists

rational numbers p, and q, and (p, q) = 1, such that
∣∣∣ξ′ − p

q

∣∣∣ ≤ 1
q2

.

Proof. Let ξ = (ξ′). Let m > 1 be a fixed integer. Consider the fol-
lowing m+ 1 elements in a sequence: 0, (ξ), (2ξ), (3ξ), (4ξ), ..., (mξ).
Secondly, consider m intervals:

[
i
m
, i+1
m

)
where i ∈ {0, 1, 2, ...,m− 1}.

By the pigeon hole principle, since we have m+ 1 elements, but only
m intervals, hence some two fractional parts fall into the same interval,
aξ and bξ with 0 ≤ a < b ≤ m, and that interval let’s denote it as[
j
m
, j+1
m

)
.

Recall a fact that suppose x ∈ R, and y ∈ R, then ∃n ∈ Z such that
|x− y| = n+ d, where d = |(x)− (y)|. Here, we let n = p, x = aξ, and
y = bξ.

Then by using this fact we can estimate the distance from the number
|x− y| to some integer p as follows:

||x− y| − p| = | |a− b| · ξ − p| = |d| < 1

m
.

That is |a− b| · ξ is less that 1
m

distant from some integer p.

Notice that |a− b| is a positive integer not greater than m.
Let’s choose it to be q, then we just found that

| |a− b| · ξ − p| = |qξ − p| < 1

m
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⇒ |qξ − p| < 1

m
≤ 1

q
.

Then once we divide both sides by q, this completes the
theorem.

�

Remark. Additionally, if ξ is irrational, then there exist an infinite
sequence pn

qn
. To see this, consider that thus far, we have found one such

q. However, why can we claim it’s infinitely many? It follows from an
observation that this proof actually can be seen as an algorithm that
generates a q ∈ [1,m] such that |qξ − p| < 1

m
.
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