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1. Binary Quadratic Forms

1.1. The Motivations. The main reason for studying the geometry of numbers by
studying the distribution of geodesics in hyperbolic spaces is based on a close con-
nection between the geodesic flow for the modular surface and the continued fraction
transformation on the unit interval. The relationship between the two is a well-known
result of the fact that the Fuchsian group associated to the modular surface is the
modular group SL(2,Z) and the action of this group on the boundary of Beltrami
upper half-plane induces the continued fraction transformation (e.g., Möbius trans-
formations). Furthermore, the distribution of geodesics in hyperbolic spaces can give
us useful information on the arithmetic of continue fractions, quadratic forms, and
the number of prime geodesics is corresponding to the Prime Number Theorem, all
of these are important branches of Number Theory.

In order to start from the basic, and scratch, we choose to let quadratic forms, and
continued fractions, to be our departure points, because these are common topics in
Number Theory, and our goal here is to build some intuitions so that when we ex-
tend this geometrical understanding of numbers to the second part we can build-up
our intuitions there based on the intuitions we have built in the first part of this note.

In the second part, our focus turn to the works done by Huber, Selberg, and
recently Margulis. Based on hyperbolic geometry they proved in three different gen-
erality of the understanding of prime distribution, for every hyperbolic surface, an
approximation of Π(t) is the function of et/t. The main technique to understand the
behavior of Π(t) is Selberg trace formula which is a generalization of the result that
has the root in linear algebra that the trace of a symmetric matrix can be computed
in two different methods: firstly, we can sum the diagonal entries; secondly, we sum
the eigenvalues. In Selberg trace formula, we calculate the trace for infinite matrices
(they are Laplace-Beltrami operators on Hilbert spaces). The norms of the closed
geodesics correspond to these diagonal terms. The asymptotic behavior of Π(t) is
derived by focusing on the smallest eigenvalue (so-called the basic frequency) is 0.
All of the eigenvalues1 of the Laplace-Beltrami operator are the harmonics frequen-
cies of the Riemannian manifold M , and can be heard when M was played as a drum.

For every closed geodesic on a manifold, M , we can assign its homology φ(γ),
which is a pair of integers describing how many times it wraps around the hole of
the manifold. In general, for a surface with genus g, the homology H1(M,Z) can
be represented by points (n1, n2, ..., n2g) with integer coordinates. Furthermore, a
question can be posed: How are the norms of geodesics distributed, if the homology

1aka the principal frequencies.
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they have are restricted in a given subset of H1(M,Z)? For geodesics that all have
the same homology, the answer is given by Phillips and Sarnak[4]. Their work was
focusing on: Π(t, β) = {γ ∈ Π(t), φ(γ) = β}. The result they proved is Π(t, β) ∼ (g−
1)g et

tg+1 . This fascinating result turns out only depends on the topological invariant
g. Our main task will be to present the big picture; whenever possible, my basic
point of view will be that of number theory, since this can shed more lights on the
key ideas.

1.2. Pell’s Equation. One of the quadratic form examples from Number Theory is
Pell’s equation. It goes back to Proclus (410-485 A.D.) as he noticed that Pythagore-
ans developed an algorithm for solving the nonlinear diophantine equation (see Ch.15
in [29]), and when it has the following form it’s called Pell’s equation:

(1) x2 − dy2 = ±1

In order to solve it, we need to find the general solution for this equation. That is
to find all pairs of integers x and y that satisfy this equation.
Example. x2 − 2y2 = ±1. The algorithm starts at the smallest solution (x, y) =
(1, 1), for x2− 2y2 = −1. Likewise, for x2− 2y2 = 1, (x3, y3) = (3, 2) Give a solution
(xn, yn), the number pairs (xn+1, yn+1) = (2yn +xn, yn +xn) are the general solution.

We can rewrite the above Pell’s equation as (x + y
√
d)(x − y

√
d) = 1. Then the

general solution is (xn +
√

2yn) = (1 +
√

2)n, and (x1, y1) is the fundamental solu-
tions. In other words, to find a solution become to find a nontrivial unit of the unit
ring Z(

√
d) of norm 1.

We can view the solvability of Pell’s equation as a special case of Dirichlet’s unit
theorem that gives the structure of the group of units of a general ring of algebraic
integers. In particular, for the ring Z(

√
d), it’s an infinite cyclic group, and the

product of {±1}.

Example. d = 14. We obtain
√

14 = 3 +
1

1 +
1

2 +
1

1 +
1

3 +
√

14

Thus the continued

fraction expansion of 3 +
√

14 is periodic with period length 4.

1.3. Diophantine Approximation. Why is 22/7 and 355/113 are chosen as good

approximation to π? If we look at 355/113, we can see that 355
113

= 3 +
1

7 + 1
16

ap-

proximate π to six decimal places. They are examples of continued fractions, which
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are used to derive the best approximations to an irrational number for a given upper
bound on the denominator, and this is called Diophantine approximation.
Example. Continue the example in the previous subsection. We truncate the ex-
pansion of the continued fraction at the end of the first period, then we can get
√

14 ∼ 3 +
1

1 + 1
1+ 1

1

= 15
4

Mind that the the denominator and the numerator is the

fundamental solution (x1 = 15, y1 = 4).
Furthermore, if we let N ∈ N, and Ax2 + Bxy + Cy2 = N , then we can see Pell’s
equation is a special case of quadratic form.

1.4. Recall: Hyperbolic Geometry. We consider H is mapped to a unit disk

D = {w = u+ iv ∈ C |u2 + v2 < 1}, and D has an induced metric ds2 = 4(du2+dv2)
(1−(u2+v2))2

.

Figure 1: Prime
geodesics are those
arcs of circles that
meet ∂ D orthogo-
nally, and the diam-
eter of D.

SL(2,R)/{±I} is the group of conformal transformations of H, and the group of

orientation preserving isometries of H w.r.t. the invariant metric2, ds2 = dx2+dy2

y2
.

This metric is hyperbolic, that is the Gauβian curvature is −1. We have a corre-
sponding measure dA(z) = dxdy

y2
, volume element dv = dx∧dy

y2
, and distance function

d(z, w) = 2 tanh−1 |z−w|
|z−w| = log |z−w|+|z−w||z−w|−|z−w| , for z, w ∈ H. Because the hyperbolic met-

ric ds2
H is conformal3 to the Euclidean metric, ds2

R, so angles in H are computed as in
Euclidean geometry R2. Geodesics in H are arcs of generalized circles orthogonally
intersecting the boundary ∂H := R∪{∞}.

Figure 2: Geodesics
are those semicircles,
and straight lines
that meet ∂H or-
thogonally.

1.5. From Quadratic Forms to Hyperbolic Geometry. Gauss was the first
mathematician to study modular groups after he figured out that the reduction
and equivalence of binary quadratic forms. One of the most important objects
of study in number theory and geometry is the modular group Γ = SL(2,Z) ={(

a b
c d

)
: a, b, c, d ∈ Z, and ad− bc = 1

}
.

which acts on the upper half-plane H := {z ∈ C : =(z) > 0}, via a large group of
conformal automorphisms, a linear fractional transformation4, that is: z 7→ gz =

az+b
cz+d

, g =

(
a b
c d

)
.

Then, the orbits of H under this action form a quotient surface which has funda-
mental domain

Γ \H := {z ∈ C : |z| > 1 and |<(z)| < 1/2}.

2Hence, under the PSL(2,R) action, H has an invariant metric.
3ds2H =

ds2R
y2

4aka Möbius transformation.
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Conversely, if we started from H, and consider the fundamental domain F(1),
which is a compact triangle on Beltrami disk, and is a triangle of finite area (by
Gauβ-Bonnet theorem). Then, in F(1), we can glue x1 = 1

2
with x2 = −1

2
, using the

isometry of H, z 7→ z + 1, and glue −ρ to i with i to ρ by using isometry z 7→ 1/z,
then these isometries generate the modular group: Γ = SL(2,Z). On the geometry
side, the resulting hyperbolic space (aka Riemann surface) M = Γ \H is a modular
surface with a cusp.

Gauβ might have been noticed the connection here between number theory and
geometry:

• definite forms may be explained as points in H
• indefinite forms may be interpreted as geodesic semicircles on H

These geometrical viewpoint also show us why it’s more difficult to study indefinite
forms than definite forms (points versus curves).

To understand Γ better, it helps to understand what kind of elements can be found
in this group. One natural way of classifying these transformations is to look at their
fixed-point sets. So, for the Möbius transformation, we want to find the fixed point
of z 7→ (az + b)/(cz + d), we need

(2) γ ∈ Γ : z 7→ (az + b)/(cz + d)⇔ cz2 + (d− a)z − b = 0.

If c 6= 0, we can use the quadratic formula to solve this equation:

(3) z =
a− d±

√
(d− a)2 + 4ac

2c

Then, we want to understand the discriminat better so that we can see what kinds of
points the Möbius transformation can fix. Since ad− bc = 1, hence (d− a)2 + 4bc =
d2 + a2 − 2ad + 4(ad − 1) = d2 + a2 + 2ad − 4 = (d + a)2 − 4. Thus, the type
of fixed points depends only on (d + a)2. We define the trace of γ ∈ Γ to be
Tr(γ) = |a + d|, and we classify γ based on its trace. If Tr(T ) = 2, then T fixes
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exactly one point in R. If Tr(γ) < 2, then γ fixes two points (that are conjugate)
in H. If Tr(γ) > 2, then γ fixes two points in R. On the other hand, if c = 0,
then we have 1

d
= a ⇒ z = a(az − b). If a = 1, there there is only one solution.

If a 6= 1, we obtain z = ba
1−a2 , which is fixed. Hence, if Tr(γ) = 2 we fix ∞, and if

Tr(γ) = |a+ 1
a
| > 2, then γ fixes∞, and one point in R. In summary, we have three

classes:

• if Tr(γ) > 2, and fixes two points in R∪{∞}, then γ is hyperbolic.
• if Tr(γ) < 2, and fixes one point in H, then T is elliptic.
• if Tr(γ)2, and fixes one point in R∪{∞}, then γ is parabolic.

Figure 3: An ori-
ented geodesic from
a to b is called the
axis of γ.

Now, if γ ∈ Γ and |tr(γ)| > 2, then γ is hyperbolic and determines two distinct
fixed points in R, and the two points are joining on H by the semi-circle geodesics;
furthermore, these geodesics are projected to Γ \ H. In other words, a segment of
geodesic semi-circle joining a point p, to another point γp, and it’s projected to a
closed geodesic on Γ \ H. To be more clear, consider there are two points z, and w
in H, and γ(w) = 1

(cw+d)2
< 1 is attracting. γ(u) > 1 is repelling. Then an oriented

geodesic from u to w is called the axis of γ. If γ ∈ Γ, and Γ is a Fuchsian group, then
its axis is an oriented closed geodesic in the quotient-space Γ\H. If two elements
γ1, and γ2 are conjugate in Γ, that is γ1 = γγ2γ

−1, for some γ ∈ Γ, then γ maps
the axis of γ2 to the axis of γ1, therefore, they represent the same oriented closed
geodesic in Γ \ H. In the opposite direction, each geodesics in Γ \ H represents the
conjugacy class of a primitive5 hyperbolic transformation in Γ. A prime geodesic
on Γ \H is a closed geodesic that traces out its image exactly once.

Moreover, there is a one-to-one correspondence between a closed geodesics on Γ\H,
and a hyperbolic conjugacy class in Γ. Again, suppose Γ is a Fuchsian group whose
elements have matrix entries locate in the ring of integers OF of a number field
F . For a prime geodesic ℘ on Γ \ H, and a prime ideal Q of OF , the Frobenius
conjugacy class Frob(℘) is a conjugacy class derived by reducing the associated
hyperbolic conjugacy class {γ} modulo Q. This Forbenius map is analogous to the
map when taking a prime ideal to its Frobenius conjugacy class in the Galois group
of an extension of number fields. This, again, shows the connection between number
theory and geometry. Based on this result, we can determine how the geodesic ℘ lifts
to Γ(Q) \ H, where Γ(Q) is the congruence subgroup of all matrices in Γ, and they
are equivalent to ±I mod Q. These symmetries form the projective special linear

group PSL(2,Z) := SL(2,Z)/{±I}, so that

(
a b
c d

)
and

(
−a −b
−c −d

)
are considered

equivalent.

5That is not a power of another.
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1.6. Indefinite Quadratic Forms. Now, let’s go back to (2), and consider a more
general quadratic form:

(4) Q(x, y) = Ax2 +Bxy + Cy2 =

(
x
y

)T
M

(
x
y

)
where A,B,C ∈ Z, x, y ∈ C, Q(x, y) = N,N ∈ N, and M =

(
a b/2
b/2 c

)
.

Figure 4: Suppose

z1 = −b+
√
d

2a , z2 =
−b−

√
d

2a . Note that
they are connected
by a geodesic.

Suppose

Q(x, y) = 0, d = B2 − 4AC, then z1 =
−b+

√
d

2a
, z2 =

−b−
√
d

2a

Definition

Two quadratic forms Q1(x, y) and Q2(x, y) are equivalent if ∃α, β, γ, δ ∈ Z
such that αδ − βγ = 1, and Q1(x, y) = Q2(αx+ βy, γx+ δy).

Example. Q1(x, y) = x2 − 2y2 is equivalent to Q2(x, y) = −2x2 + y2. However,
forms can be equivalent to a more general way: Q3(x, y) = x2 + 2xy − y2 is equiva-
lent to Q1(x, y), and Q2(x, y). The reasons are: (x+ y)2 − 2y2 = x2 + 2xy − y2, and
(x− y)2 + 2(x− y)y − y2 = x2 − 2y2. This is why we define in this way.

Consider the following two matrices: S =

(
0 −1
1 0

)
, and T =

(
1 1
0 1

)
. These

two linear transformations S(x, y) = (−y, x), and T (x, y) = (x + y, y) show the
equivalence of Q1

∼= Q3, and Q2
∼= Q3.

Moreover, a fundamental quantity in number theory is linked to this which is the
Class Number.

Definition

Let d > 0 be given, the class number h(d) is the number of nonequivalent
quadratic forms with given discriminant d := B2 − 4AC.

If x = z, y = 1, B = (d−a), then we derive the (2) again. Now, if (d−a)2+4ac > 0,
then Q(x, y) is called indefinite . In particular, (2) determine a unique geodesic γ
on H with γ(+∞) = x, and γ(−∞) = x′ that quotients down to a closed geodesic γ
on the modular Riemann surface M = Γ \ H that we made by gluing method, and
the modular surfaceM has a cusp. Again, the focus of this note is only concentrating
on those image geodesics are closed.
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Theorem 1. Equivalence classes [Q] of quadratic forms Q(x, y) = Ax2 +Bxy+Cy2

with discriminant d correspond to all closed geodesics γ of length `(γ).

(5) `(γ) = 2 log(εd) = 2 log

(
xn + yn

√
d

2

)

This equation also bridges the fundamental solution to the lengths of
closed geodesics. This length of the all closed geodesics in a certain arithmetic
hyperbolic surface (associated with the matrices T and S) are identified with `(γ) =
2 log εd, with each length appearing h(d) times, where d is restricted to be not
a square and d ≡ 0 or 1(mod4).

If we look at the lifts γ′ of closed geodesics γ, where γ′(∞) > 1, and 0 < γ′(−∞) <
1. Then we can have a connection between continued fractions and closed geodesics,
and this connection is called Gauβ map (aka Gauβ continued fraction map). For

α = n0 +
1

n1 + 1
n2+ 1

1
n3+...

= [n0;n1, n2, n3, ...] The values ni have a geometric meaning

that they are the number of times the geodesic wraps around the cusp, the number
of times the geodesic that links two points on real line over H, so once
we glue these tiles and get the cusp, we can see it wraps around the cusp on each
excursion into the cusp.

Example. If we consider Zagier’s “minus” convention, we denote a real number

with [n0;n1, n2, n3, ...] = n0 −
1

n1 − 1
n2− 1

1
n3−...

Then we can represent a fixed point

w = 4+2
√

3 on real line by joining the origin to w. Thus, w = [8, 2] = 8−
1

2− 1
8− 1

1
2−...

Furthermore, we can only consider this in quotient space. We can consider it takes 7
crossings to the right, then it goes back with 3 crossings, that is it hits 8 boundaries
of the triangle when it heads to the right, then it hits another 2 times when it moves
backward.

First, we start to think of the whole upper-half plane tiled in the following Farey
tessellations.
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Next, now it’s more easy to understand the following idea:

This is why the each digit in the code [n0;n1, n2, n3, ...] tells how far it should wrap
the cusp. Further, the idea is since the period is two, so we can denote w = [8, 2],

and the closed geodesic in F is determine by the quadratic form: Q =

(
15 −8
2 −1

)
.

The above figure has ten closed geodesic segments. Number 1 to 7 are from left
to right (w.r.t. to the vertex, on real line, of the triangle it crosses), and can be
denoted by an operator (it’s also a quadratic form matrix) L. Number 8 to 10 is in

the opposite, and denoted as R. Hence, w = [8, 2] = 8 −
1

2− 1
8− 1

1
2−...

←→ [L8, R2]

where [L8, R2] is called the cutting sequence. The idea goes back to Artin, and
was firstly developed by Caroline Series[27] in “plus” sign convention (which has the
same correspondence, and the only difference is the signs in writing the continued
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fractions), and a nice Γ(2)6 example, and the introduction of the original idea is in[30].

Based on theorem 1; moreover, Gauβ’s one more observation at here is he noticed
the dependence h(d) on d is very irregular. Then, Siegel showed that∑

εd≤x,d≤x

h(d) log εd ∼
π2x3/2

18ζ(3)
, x→∞.

2. Prime Number Theorem

Figure 5: A good ex-
ample to dive in is
the planar billiard.

2.1. Einstein’s Problem of 1917. The question he posed: “how can classical me-
chanics give us any hints about the quantum mechanical energy levels when the
classic system is ergodic?”[19]. This is the departure point of the studies of the
modern quantum chaos in complex system. A good example to dive in is the planar
billiard. Consider a point particle moves on a flat surface, and the motion is confined
to a compact domain Ω ∈ R2 with boundary ∂Ω, and ∂Ω is a hard wall (all collisions
are elastic), that is a flat torus R2 \Z2 with genus g = 1, so this space is not hyper-
bolic. It turns out the motion is sensitive to the geometry of the boundary. If the

Figure 6: θ ∈ Q,
if and only if the
trajectory is peri-
odic. If θ�∈ Q, then
the orbit is equidis-
tributedl, and dense
within ∂Ω.

boundary is a rectangle, an ellipse, a circle, the system is integrable. However, if the
shape is a stadium, then it becomes a strongly chaotic system. The study of the bil-
liard problem become influential for the development of modern ergodic theory, and
the breakthrough was made by Artin in 1924. Artin’s billiard is a two-dimensional
non-Euclidean billiard, that is a non-compact Riemann surface of constant negative
Gauβian curvature7 K = −1. This can be made by removing one point on a torus
to make it be punctured. Some further details of this billiard are covered in the
following subsections. Artin used an idea which goes back to Gauβ so that he could
formulate the geodesic motion as a map in terms of continued fractions , which
we just constructed some basic understandings in the previous section. It can be
shown that the geodesic flows on compact symmetric Riemann spaces
are Anosov system, and all Anosov systems are ergodic. Furthermore,
for a general Anosov flow, a homology class in H1(M,Z) may contain only a finite
number of periodic orbits[9].

The next breakthrough was done by Yakov Sinai in 1963[26], he proved that the
ideal gas billiard with Boltzmann-Gibbs statistics is ergodic. After Sinai, in 1970,
the next milestone was set by Gutzwiller. Based on Feynman’s idea that “sum
over histories” as a third approach, so-called Feynman’s path integrals, to recreate
the Quantum Mechanics, and Quantum Field Theory, Gutzwiller pioneered the idea

6A congruence subgroup of SL(2,Z).
7Geodesics diverge exponentially fast in t[17].
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of summing over all classical solutions in semiclassical quantization8 expansions of
Green’s functions and chaotic spectral problems. The observation he made is
the trace of the energy-dependent Green’s function9 is given by a formal
sum over all classical closed orbits in phase space, that is, to sum over
all periodic orbits. If we apply Gutzwiller’s method to Artin’s billiard,
then the growth rate of this sum is in a number that we will prove in
the next two subsections. Furthermore, this can show that K = −1, the
Gauβian curvature, is the key source for entropy and chaos in billiards in
hyperbolic polygons. That is one of the physical meanings of the prime
number theorem (PNT), and the physical meaning of t, or log x, in (36),
and in(28) are the most important global property of a strongly chaotic
system, and it’s called topological entropy . The geodesic (Hamilton) folw on
negative curvature Riemann surfaces (hyperbolic spaces) are the best understood
fully chaotic flows (Hopf, Morse, Sinai, and so on).
2.2. A counting function for prime numbers.

Definition

π : R −→ N . Consider the following arithmetic function:

(6) π(x) := #{p | p ≤ x}
where p stands for prime number.

Theorem 2. The prime number theorem says that

(7) π(x) ∼ x

log x

as x approaches to ∞.

The first proof was independently given by Hadamard and de la Vallée Poussin
in 1896, and analytic properties of the Riemann zeta function were used in their
proofs. Our proof of PNT will base on the a Tauberian theorem introduced by
Ikehara (1931). The following definition is our departure point to prove Theorem 2.

8The WKB method.
9The Fourier transform of the time-evolution operator.
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Definition

The original zeta function. Consider the open half-plane A = {s = C | <(s) >
1} ⊂ C. Then we can define a map by using the set A as the domain to the
complex plane as its range:

ζ : A −→ C
then we have the following Euler zeta functiona

(8) s 7−→ ζ(s) :=
∞∑
n=1

1

ns
.

aThe sum (aka Dirchlet sum) converges on the domain A(see lemma 1), and it is holomorphic
on the complex plane C (by Morera’s theorem, and then we can show it’s analytic on the
domain A, by using Weierstrass M-test and Cauchy’s integral theorem).

The following (10) will be used in our proof of PNT.

• First, we need to define Euler gamma function:
Γ(s) =

∫∞
0
ts−1e−tdt (which can be proved that is also well-defined, and

holomorphic, if s ∈ C \Z≤0).
• then we change variable for t to nα, and multiply both sides by 1

ns
, and then

take the summation,
∑∞

n=1, on both sides. Then, we will reach two cases for
α, which are α ∈ [0, 1], and α ∈ [1,∞) which give us nonnegative Lebesgue
integrable functions.
• Then, the following Mellin transform expression was firstly derived by Abel

in 1823 (and then Riemann (1859) went further):

(9) ζ(s) =
∞∑
n=1

1

ns
=

1

Γ(s)

∫ ∞
0

αs−1

eα − 1
dα.

• By using Gamma function Γ(s) =
∫∞

0
αs−1dα
eα

⇒ Γ(s)
ns

=
∫∞

0
ts−1

etn
dt. Riemann

(1859) obtained: Γ(s)ζ(s) =
∫∞

0
ts−1

et−1dt.
• To see a deeper connection between the above ζ-function and primes, Rie-

mann used (5) and (10) to derive the below equation that will also be applied
in our proof of PNT:

(10)

−ζ ′(s)
ζ(s)

=
∑
pi

log pi
pmsi

=
∞∑
n=1

Λ(n)

ns
=

∫ ∞
1

x−sdψ(x) =

∫ ∞
0

e−stdψ(et) = s

∫ ∞
0

e−stψ(et)dt.

where Λ(n) is von Mangoldt’s function, and ψ(x) is Chebyshev function.

Now, let’s introduce Ikehara-Wiener theorem which was revised by Ikehara from
his mentor Wiener’s Tauberian theorem:
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Theorem 3.
Let the real valued function f be non negative and non-decreasing on [0,∞), and
apply the Mellin transform

(11) g(s) := s

∫ ∞
1

f(x)x−s−1dx

Then by using Stieltjes integral, and integration by parts, the following expression
exists for <(s) > 1, we have g(s) = f(1) +

∫∞
1
x−sdf(x). Furthermore, if for some

constant α, the holomorphic function g(s) − α
s−1

has a continuous extension to the

closed half-plane with <(s) ≥ 1, then limx→∞
f(x)
x

= α, whenever α ≥ 0.
2.3. Wiener and Ikehara’s proof of Prime Number Theorem.
Motivation. The reason why we focus on Wiener and Ikehara’s approach in this
note is due to the reason that the notions we developed in this proof will be used in
learning Huber’s proof of Prime Number Theorem of Closed Geodesics.10

Proof. From equation (8), we let x = et, then we have −ζ
′(s)

ζ(s)
= s

∫∞
1
ψ(x)x−(s+1)dx.

Then, since ζ′(s)
ζ(s)

+ 1
s−1

has a holomorphic extension to the open half-plane <(s) > 0,

hence by Ikehara-Wiener theorem we have limx→∞
ψ(x)
x

= 1. Now we have ψ(x) ∼
x, as x −→ ∞. The following derivations are elementary, but will be used as a
connection with the closed geodesic.

We can notice that ψ(x) doesn’t grow as fast as ϑ(x) :=
∑

pi≤x log pi. Furthermore,

ψ(x) − ϑ(x) =
∑mx

m=2 ϑ(x1/m) where mx is the greatest integer such that 2m ≤ x.
Since mx ≤ log2 x and ϑ(x1/m) ≤ ϑ(x1/2) ≤ ψ(x1/2) = O(x1/2), hence

ϑ(x) ∼ x, as x −→∞.

Lastly, integrating by parts[3], we can obtain

(12) π(x) =
∑
p≤x

1 =

∫ x

2

dϑ(u)

log u
=
ϑ(u)

log u
+

∫ x

2

ϑ(u)

u(log u)2
du

Furthermore, from (9), and use the result we just obtain ϑ(x) ∼ x, we have the
following

(13)
π(x)

x/ log x
=
ϑ(x)

x
+ o(1)⇒ π(x) ∼ x

log x
.

�

10Selberg’s elementary proofs, with one version that he used Erdös’ result, can be reached at[1].
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3. Prime Number Theorem for the Compact Riemann Surfaces

The main idea in this section is counting points in lattice orbits on the hyperbolic
upper half-plane H.
3.1. Huber’s proof on PNT of closed geodesics.
Before asking a practical question, let’s define some more new notations, and notions.

• dist(, ) denotes the distance function.
• `(γ) denotes the length of a curve γ.
• A curve γ : [a, b]→M is called simple, if γ is an injective mapping.
• Suppose M be a topological space, then two closed curves γ1, γ2 : S1 →M

are called homotopic, if there is a continuous map ψ : [0, 1]×S1 →M such
that ψ(0, t) = γ1(t), ψ(1, t) = γ2(t), where t ∈ S1 = R /[t 7→ t + 1]. (That is
we can freely deform one curve to the other.)
• Two parametrized closed geodesics γ1, γ2 : S1 → M (at unit speed) are

equivalent if there is a homeomorphism h : S1 → S1 of the form h(t) = t+
const such that γ′ = γ ◦ h. Then, a closed geodesic is an equivalence
class of closed parametrized geodesics.
• Let γ1, γ2 are closed geodesics, and let m ∈ Z \{0}. γ1 = γm2 denotes γ1 is

the m-fold iterate of γ2, if γ1(t) = γ2(mt), t ∈ S1.

Definition: Γ-primes

Let M = Γ\H be a compact Riemann surface of genus g ≥ 2. Then ∀γ ∈ `(M),
where γ is a closed geodesic, ∃γ0 ∈ ℘(M), where γ0 is a unique prime geodesic,
and m ≥ 1 is a unique exponent such that γ = γm0 .

N-primes Γ-primes
bounded numbers π(x) := #{p | p ≤ x} Π(t) = #{γ ∈ ℘(Γ \H)|`(γ) ≤ t}
of primes φ(t) = #{γ ∈ `(Γ \H)|`(γ) ≤ t}
von Mangoldt’s Λ(n) = log p, if n = pm, Λ(γ) = `(γ0) = logNγ0

func. for some prime p,m ≥ 1,
otherwise, Λ(n) = 0

Chebyshov ϑ(x) =
∑

p≤x log p θ(t) =
∑

`(γ)≤t `(γ) =
∫ t

0
τdΠ(τ)

func. ψ(x) =
∑

n≤x Λ(n) Ψ(t) =
∑

`(γ)≤t Λ(γ)

For Γ-primes, # means cardinality; the prime in the definition of Chebyshov θ is
the restricted summation of prime geodesics. Now, we can rewrite lengths to norms11

11Nγk = (Nγ)k. This implies the norm of geodesics is a completely multiplicative function.
Instead of considering lengths, it’s more general to consider the norms of the prime geodesics. If
f is a completely multiplicative function, then f satisfies the requirement: f(mn) = f(m)f(n),
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(so that we can obtain a more generic framework) by substituting x = et, and adding
a subscript N to each N -prime counting functions.

According to Theorem 1, we can define the norm of a closed

geodesic by taking the length as it’s power, that is: e`(γ) =
(
t+u
√
d

2

)2

.,

where (t, u) is the fundamental solution of Pell’s equation, `(γ) is the eigen-

value of g ∈ Γ, g =

(
t−Bu

2
−Cu

Au t+Bu
2

)
, and t2 − du2 = 4 (it’s a Pell’s equation).

Note that A,B, and C are from the quadratic form which can satisfies:

Q′ ∼ Q⇔M = γTMγ, γ ∈ Γ,

and Q→ g ∈ Γ.

Mostly, for g ∈ SL(2,R), g ∼
(
N(g)1/2 0

0 N(g)−1/2

)
. Furthermore, εd = t+u

√
d

2

is the eigenvalue of g.

From Pell’s Equation to lengths of closed geodesics

Proof.

(14) `(γ) =

∫ N(g)

1

1

y
dy = lnN(g) = ln(ε2d)

(15) ⇒ e`(γ) = ε2d.

where εd is from t2 − du2 = 4, and (t, u) is the fundamental solution. �

∀m,n ∈ N−{0}. If f is only multiplicative function (not completely multiplicative), then m⊥n,
i.e., m,n must be coprime.
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N-primes Γ-primes
norms ‖p‖ Nγ := el(γ)

bounded numbers πN(x) := #{p | p ≤ x} π(x) = #{γ ∈ ℘(Γ \H)|Nγ ≤ x}
of primes ϕ(x) = #{γ ∈ `(Γ \H)|Nγ ≤ x}
von Mangoldt’s ΛN(n) = log p, if n = pm, Λ(γ) = `(γ0) = logNγ0

func. for some prime p,m ≥ 1,
otherwise, ΛN(n) = 0

Chebyshov ϑN(x) =
∑

p≤x log p ϑ(x) =
∑

Nγ≤x `(γ) =
∫ x

1
log ξdπ(ξ)

func. ψN(x) =
∑

n≤x Λ(n) ψ(x) =
∑

Nγ≤x Λ(γ)

This prime geodesic theorem (PGT) can be proved independently by using Sel-
berg’s trace formula; however, we cannot use that approach to prove PNT, so instead,
we dive into Huber’s proof which can be bridged to PNT. Suppose s ∈ C,<(s) > 1,
and suppose K(ρ) = (cosh(ρ))−s is a generating function that satisfies lemma 5.

Let M = Γ\H be a given orbifold, where Γ is a congruence subgroup of PSL(2,R),
and it acts freely discontinuously12 on H13

Furthermore, K generates a smooth heat kernel K on Γ \H, and its Γ-bi-invariant
lift14, KΓ(z, w) is Dirichlet series G(s; z, w) that has the following expression:

(16) KΓ(z, w) = G(s; z, w) =
∑
T∈Γ

(cosh(dist(z, Tw)))−1,

which is a Dirichlet series, and it can be proved to be a holomorphic function of s
for <(s) > 1.

Claim: Our goal here is to prove that this can be extended to a bit larger
region {<(s) > 1 − δ}, once we get there, this will be an entry of the
Wiener-Ikehara Theorem, and can let us bridge Number Theory.

Proof. We can rewrite the Dirichlet series and the heat kernel by using the lemma
9.3.5 in [5]. The function h = hs is the transform of K = cosh−s.

12That is a free regular set. So, ∃ a neighborhood U of z ∈ H such that ∀T ∈ Γ \ {I}, we have
T ◦ U ∩ U = ∅.

13It’s the same requirement for defining Dirichlet polygons.
14A differential operator on a Lie group G is said to be bi-invariant if it is both right and left

invariant. Here the Dirichlet series G(s; z, w) is a natural Γ-lift on H.
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(17) h(r) :=

∫
H
k(z, i)Ω(z)dH(z)

(18)

=

∫ +∞

−∞

∫ +∞

0

y1/2+irL

(
1 + x2 + y2

2y

)
dy

y2
dx =

√
2

∫ +∞

−∞
eiru

∫ ∞
|u|

K(ρ) sinh ρ√
cosh ρ− cosh ρ

dρdu.

(19) KM(x, y) =
∞∑
n=0

hs(rn)ϕn(x)ϕn(y),

If we let

sn = 1
2 ± irn, then

for n > 0, and 0 ≤
λn ≤ 1

4 , sn are

spectral zeros of

the Selberg Zeta

function (which is

based on Dirichlet

L-function when

L-function is

written as an

Euler product in

the half-plane of

absolute

convergence)[9].

(20) G(s; z, w) =
∞∑
n=0

hs(rn)φn(z)φn(w),

x, y ∈ M , and z, w ∈ H. n is running from 0, 1, .... the function φn is lifting from
eigenfunction ϕn of the Laplacian on M = Γ \H.

rn =


i
√

1
4
− λn if 0 ≤ λn ≤ 1

4
,√

1
4
− λn if λn ≥ 1

4
.

That is, rn is mapped from eigenvalues λn.
Γ is holomorphic

in C, except at:

z = 0,−1,−2, ...,

these are poles

with residues
(−1)n

n! .

In the following derivations, Γ temporarily denotes Gamma functions unless we em-
phasize that it denotes the congruence subgroup of PSL(2,R). If <(η) > −1,<(w) >
1
2

+ 1
2
<(η), a > 0, b > 0,

then[23]

(21)

∫ ∞
0

ηdt

(a+ bt2)ω
=
a(η+1−2ω)/2

2b(η+1)/2

1

Γ(ω)
Γ

(
1

2
(η + 1)

)
Γ(ω − 1

2
(η + 1)).

For |=(r)| ≤ 1
2

and <(s) > 1, if z = x+ iy ∈ H, then
(22)∫ ∞

0

yir−3/2

(
1 + x2 + y2

2y

)−s
= 2s−1(1+x2)(−1/2+ir−s)/2 1

Γ(s)
Γ(

1

2
(s+ir−1

2
))Γ(

1

2
(s−ir+1

2
)).

Compare equation (18), and (22), and recall K(ρ) = (cosh ρ)−s, and let L(τ) = τ−s,
we can see

(23) hs(rn) = 2s−1π1/2 1

Γ(s)
Γ(

1

2
(s− 1

2
+ irn))Γ(

1

2
(s− 1

2
− irn)).
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By using an identity15 in [23], and since as n = 0, we have r0 = i
2
, so we can substitute

r0 into (23), and derive

(24) hs(r0) =
2π

s− 1
.

If n ≤ 1, we have λn ≥ λ1 > 0, thus, <(1
2
− irn) ≤ δ, for some δ > 0. Furthermore,

since Γ 6= 0∀z ∈ C, so for each n, n ≥ 1, the function s 7→ hs(rn) is meromorphic
with poles that are contained in {1

2
± irn − 2k|k = 0, 1, 2, ...}, and for n > 0, hs(rn)

is holomorphic in the half-plane <(s) ≥ (1− δ).
�

Claim: Our next goal is to study the growth rate of hs(rn) as n → ∞, for
some s ∈ B ⊂ {s ∈ C |<(s) ≥ (1− δ)}, whenever B is a compact domain.

Proof. Since B is compact, so we can apply Stirling formula to (23), and reach
|Γ(ξ − iρ)Γ(ξ + iρ)| ≤ c1ρ

2<(ξ)−1e−xρ, where ξ ∈ B, c1 ∈ R, and ∀ρ ∈ R, ρ ≥ 1.
Moreover, we can have ‖hs(rn)‖ ≤ c2λ

−2, where c2 ∈ R,∀s ∈ B, and n ≥ 1. Then
substitute this hs(rn) back into (20), so we obtain

∑
λ−2
n φn(z)φn(w) := G0.

By Gauβ-Bonnet theorem, we know area(M) = 2π(2g−2), where g is the genus of

M = Γ \H. Thus, φ0(z) = constant = (area(M))
−1
2 . It follows that as this identity

is substituted into (20), and φ0(z) = constant = (area(M))
−1
2 , so it gives us

(25) G(s; z, w) = G0 +
1

2(g − 1)(s− 1)
.

Now, recall the counting function N(t), and apply this definition to Γ. We are
counting the group elements that satisfy the condition:

(26) N(t; z, w) = #{T ∈ Γ|dist(z, Tw) ≤ t}.
By (16),
(27)

G(s; z, w) = l0 +

∫ ∞
0

(cosh t)−sdN(t) = l0 +

∫ ∞
0

e−stdN(t(τ)) = s

∫ ∞
0

e−stN(t(τ))dτ,

where l0 is the number of group elements T ∈ Γ such that dist(z, Tw) = 0, in the
second equality the variable cosh t is changed to eτ , and then we can derive the third
equality by using integration by parts.

15See [23], Section 1.1 The Gamma Function: functional equations, page 3. In a subsection: the
multiplication theorems, as m = 3, we can obtain Γ(2z) = π−1/222z−1Γ(z)Γ( 1

2 + z).
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Moreover, let’s apply Wiener-Ikehara’s tauberian theorem, that we have used in
proving PNT, on (25) and (27), which gives an asymptotic behavior that only de-
pends on the topological invariant–genus, g:

(28) N(t(τ))(2g − 2) ∼ eτ = cosh(t(τ))

as τ →∞. Hence,

(29) N(t) = N(t; z, w) ∼ et

2(2g − 2)
, as t→∞.

Now, if we use the notion in linear algebra, and take the trace on KM , that is
trKM =

∑∞
n=0 h(rn). By using the length trace formula, theorem 9.2.10 in [5], which

has a same derivation route we used in deriving (18).
(30)

trKM =
∞∑
n=0

h(rn) = 4π(g − 1) +
∑

γ∈`(M)

`(γ0)√
cosh `(γ)− 1

∫ ∞
`(γ)

(cosh ρ)−s sinh ρdρ√
cosh ρ− sinh `(γ)

where γ0 is the unique primitive closed geodesic without lifting (so γ = γn, for some
n ≥ 1). We change the variable with cosh ρ := cosh `(γ) + 1

2
x2e−`(γ), and then apply

(21) so that we can obtain:

(31) trKM = 4π(g − 1) +
Γ(s− 1

2
)
√
π

Γ(s)

∑
γ∈`(M)

Λ(Γ)(cosh `(γ))1/2−s(cosh `(γ))−1/2

let Λ?(γ) := Λ(γ)(cosh `(γ))1/2(cosh `(γ)− 1)−1/2

(32) = 4π(g − 1) +
Γ(s− 1

2
)
√
π

Γ(s)

∑
γ∈`(M)

Λ?(Γ)(cosh `(γ))−s

By (24), ∑
γ∈`(M)

Λ?(Γ)(cosh `(γ))−s =
2

s− 1
+ f(s)

where f(s) is holomorphic on half-plane <(s) > (1 − δ), and we have come back to
what we did in proving Prime Number Theorem.

Let Ψ?(t) =
∑

`(γ)≤t Λ?(γ), then by lemma 6, we have Ψ?(t) = O(tet) as t → ∞,

and furthermore, <(s) > 1 ⇒ t(τ) = cosh−1(eτ ), which is useful when we apply the
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Wiener-Ikehara theorem in the following integration.∑
γ∈`(M)

Λ?(γ)(cosh `(γ))−s =

∫ ∞
0

(cosh t)−sdΨ?(t) =

∫ ∞
0

e−sτdΨ?(t(τ))

(33) = s

∫ ∞
0

e−stΨ?(t(τ))dτ

After applying Wiener-Ikehara theorem as we did in the proof of PNT, here Ψ?(t(τ)) ∼
2eτ ,⇒ Ψ(t) =

∑
`(γ)≤t Λ(γ) ∼ et as τ →∞.

The next step is to let η > 0 be the lower bound of the norms of the closed geodesics
of M , and let m(t) = b t

η
c. Thus, the two Chebyshev functions can be related by

(34) Ψ(t) = θ(t) +

m(t)∑
m=2

θ(
t

m
) ≤ m(t)θ

(
t

2

)
≤ t

η
Ψ

(
t

2

)
= O(te

t
2 ), t→∞

Hence,

(35) θ(t) ∼ et, t→∞.
Lastly, we use the same method that we used to derive (12), and obtain the following

(36) Π(t) =

∫ t

η
2

dθ(τ)

τ
∼ et

t
⇒ π(x) ∼ x

log x
,

where x = et. �

4. Conclusion

In the previous two sections we have seen how number theory is connected to
geometry. These two subjects is branched after Gauβ (actually there is one more
great idea originated from him, that is the connections between linking numbers,
closed geodesics (and this time we focus on knots), Legendre symbol and quadratic
reciprocity, and the integration loop in Biot-Savart Law). Based on the study of
linking numbers and closed geodesics, Gauβ developed now it’s called Gauβ’s law
in electromagnetism and in vector analysis. This is also a good reason to seek the
geometrical meaning of numbers which can help us to solve number theory problems,
for example, the geometry of continued fractions can help us to solve Diophantine
approximation. On the contrary, the notions in number theory can also help us
to solve problems in geometry. For example, once we code the geometry by using
continued fraction, then we can show that any two geodesics with the same coding
are the same. Furthermore, this coding idea may become a foundation to help us
to count the growth rate of non-simple closed geodesics directly. Moreover, once
we get there, it would be interesting to look back to see what’s the number theory
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interpretation on this.

Additionally, there is one more connection between PNT and PGT is the Möbius
inversion function. We can use this function to reconstruct Witten index[28]. On one
hand, Witten index is deriving by taking the trace of the Hamiltonian operator on
Hilbert space, that is to sum over eigenvalues, and the meaning of it is the bose-fermi
cancellation in non-singlet representation of the supersymmetry algebra. Thus, it can
tell the difference of the two kinds of number: the number of bosons and the number
of fermions. The essential difference of these two particles is parity. A fermion has
odd parity, and a boson has even parity. Hence, we can use fermions to construct
bosons, like to use primes to build composite numbers, but not in the other way
around. On the other hand, Witten index is govern by Euler characteristic numbers,
and it’s a topological invariant that only depends on the system that describe by the
Hamiltonian (for example, we can apply it to Laplace-Beltrami operators on Hilbert
spaces as in billiard models) where we use Witten index to take the trace. The
connection between the PNT and PGT is: since the Atiyah-Singer index theorem is
equal to the Witten index and thus relates index theorems to not only supersymmetry,
but also Number Theory. Hence, this is the fourth16 point of view we can take when
study the connections between PNT-PGT, and Number Theory-Geometry.

5. Appendix

Lemma 1. If s ∈ A, then the Dirchlet sum of the Euler zeta function converges.

Proof. Consider s = σ + it ∈ A, and let n ∈ N, then we can have ns = ntniσ =
nt exp{i(σ log n)} where σ log n ∈ R. Hence, if σ ∈ A, we obtain |ζ(s)| =

∣∣∑∞
n=1

1
ns

∣∣ =∣∣∣∑∞n=1
exp{−iσ logn}

nt

∣∣∣ ≤ ∑∞n=1

∣∣∣ exp{−iσ logn}
nt

∣∣∣ =
∑∞

n=1
1
nt
≤ 1 +

∫∞
1

1
at
da = 1 + 1

t−1
. It

follows that the summation converges, if t > 1, that is the open half-plane, and so
the Euler zeta function is well-defined if s is in the domain set A. �

Lemma 2. Euler product formula

(37) ζ(s) =
∞∑
n=1

1

ns
=
∞∏
i=1

1

1− p−si

16The first is Huber’s method, the second is by Selberg’s original viewpoit, the third
is to code closed geodesics by using Pell’s fundamental solution, continued fractions,
and ergodic billiards.
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where pi are prime. The origin of this formula is in 1737, Euler discovered a
theorem that if function f : N−{0} → C is a completely multiplicative func-
tion17, and then he considered f(m) = ms, s ∈ C. Then if the series

∑∞
n=1 f(n) is

absolutely convergent, then we can prove the above claim by using the property of
multiplicative function, geometric series, and then rearrange the terms on the right
hand side by collecting the terms as the method used in Combinatorics when dealing
with generating functions. After derive the Euler product formula, Euler derived the
following:

(38) log ζ(s) =
∑
p

log

(
1− 1

ps

)−1

=
∑
p

1

ps
+
∑
p

∞∑
m=2

1

mpms
=
∑
p

1

ps
+R(s)

where 0 < R(s) < 1
2
.18

Lemma 3. Let S be a compact hyperbolic surface and let γ1 be a homotopically non-
trivial closed curve on S, then γ1 is freely homotopic to a unique closed geodesic
γ.[4]

Lemma 4. Let S be a compact hyperbolic surface, and L > 0. Only finitely many
closed geodesics on S have length ≤ L.

Proof. This can be proved by contradiction, by considering there are infinite pairwise
different closed geodesics γ1, γ2, ... on S of length ` ≤ L. Then by using compactness,
we can have finitely many coordinate neighborhood for each point in S. So we can
form a convex neighborhood, by considering points with distance less than a certain
amount, say 4r. Then, within that neighborhood, for two distinct geodesics, we can
have dist(γn(t), γk(t)) ≤ r,∀t ∈ [0, 1]. Thus, γn, and γk are homotopic. By the
previous lemma, γn = γk, and we reach a contradiction. �

Lemma 5. Let B be a real or complex parameter space. Assume the generating
function K(ρ, b) : [0,∞)×B → C is an even function belonging to Cν,λ([0,∞), B;C)
and |K(n,l)(ρ, b)| ≤ ce−ρ(1+δ) on [0,∞) × B. n = 0, ..., ν, l = 0, ..., λ, where c and
δ ∈ R+. Note that Cν,λ means K is ν (or λ) times differentiable w.r.t. ρ (or b).

Lemma 6. Let Φ(L) be the number of closed geodesics of length ` ≤ L on a compact
Riemann surface of genus g ≥ 2. Then Φ has growth rate Φ(L) = O(eL) as L→∞.

17 f satisfies the requirement: f(mn) = f(m)f(n), ∀m,n ∈ N−{0}. If f is only multiplicative
function (not completely multiplicative), then m⊥n, i.e., m,n must be coprime.

18R(s) <
∑
pi

∑∞
m=2

1
2pmi

= 1
2

∑
pi

1
pi(pi−1) = 1

2 .
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