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Abstract. Enumerating r-by-c (both r and c are integers greater
than one) contingency tables is a serious computational task even
today. In this paper, our goal is to build up a thorough understand-
ing of the fundamentals. Hence, we restrained ourselves to only
focus on two-by two contingency tables, and developed our own
combinatorical argument of Fisher’s Exact Test from scratch, and
reconstructed the mainstream conditional probability approach.
Within this restriction:
• we developed our own combinatorical argument proof of hy-

pergeometric distribution in Fisher’s Exact Test. (Compared
to the mainstream textbooks, this combinatorical approach
is a more natural, and original way to obtain the main result
of Fisher’s exact test, and compare it to the conventional
approach, i.e. binomial distribution, and conditional proba-
bility)

• we compared the results of Fisher’s Exact and asymptotic
method, to understand why we can’t use asymptotic method
for small sample sizes sampling

• we implemented our own algorithm (developed in Part II,
applied to real data in Part III)

• in Part IV, we derived a more accurate formula by using
Saddle Point Approximation for future use (When ε > 0 is
given, this ε depends on the computational power, then we
have control over how large the possible errors can be brought
in by choosing an L > 0)
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1. Introduction

In Fisher’s 1935 book, “The Design of Experiments[1],” he intro-
duced his points of views of Statistics and the designs of experiments.
He started with a story that on a summer afternoon in Cambridge in
the 1920’s, a group of his friends discussed about a claim made by a
lady (Muriel Bristol) about her superpower on distinguishing whether
for a given cup of tea, milk was poured first or last. Given the situation
and conditions, we have our main problem:

how to design an experiment to test whether this lady’s
claim is true?

A quick answer for the above problem is Fisher’s Exact Test. This
test is originally reported in Fisher’s book[1]. In order to have a deep
concise understanding, we only addressed the necessary notions. We
used the lady’s tasting tea example to introduce Fisher’s Exact Test
by justifying and defining the keywords.

The experiment is the first original exposition of his idea of a null
hypothesis, which in his words is “never proved or established, but is
possibly disproved, in the course of experimentation.”

In addition to our knowledge of R to calculate the p-value for Fishers
Exact Test, based on Fisher’s Exact Test methodology, we can modify
an exact test to our needs.1 We want to learn more insights of Fisher’s

1Suppose we define our 2 by 2 contingency data in a 2 by 2 matrix, called
matrix small counts, then we can obtain the result of Fisher’s Exact Test in R by
typing this R code: fisher.test( matrix small counts ) in R studio.
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Exact Test so that in our future career, if we need to confront a new
scenario, we can know how to redesign a customized exact test that is
based on the essential idea of Fisher’s Exact Test.

2. Part I: Developing Fisher’s Exact Test

There are two different methods to derive Fisher’s Exact Test:

• We used Chu-Vandermonde formula (in Method I, see below)
to form a combinatorical argument to derive hypergeometric
distribution. (Without this understanding/insight, it’s
unlikely that one can see the connection between a 2 by
2 table and using hypergeometric distribution to com-
pute the p-value. Also, it’s counter-intuitive for one
to realize that this procedure actually enumerates all
possible tables in the configuration space under given
margins2.) This has been completed by one of the authors of
this paper which has not yet been seen in literature.
• Method II (see below) is also reconstructed in this section

and it’s the conventional way in Fisher’s book. However, since
this approach is based on conditional probability, it adds one
more layer. In this approach, there is no way to know what
role each term in the formula (8) plays in the final result. For
the completeness of this paper, we still include this approach
as our Method II, and that’s the motivation we developed our
own proof.

2.1. Method I (Our own proof). Let’s take the Lady Tasting Tea
problem[1] as our main example.

The lady chooses 4 cups from 8 cups and she needs to guess which
cup has the tea poured first or the milk poured first.

Table 1. Lady Tasting Tea

True order is tea
first (T )

True order is
milk first (M)

Total (margin)

Lady Says Tea
first (t)

a = 3 b = 1 a+ b = 4

Lady Says Milk
first (m)

c = 1 d = 3 c+ d = 4

Total a+ c = 4 b+ d = 4 n = 8
(margin)

2(a+ c), (b+ d), (a+ b), (b+ c) and n in Table 1.
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a = #(guess tea first|tea first is true) = #(t, T )
b = #(guess tea first|milk first is true) = #(t,M)
c = #(guess milk first|tea first is true) = #(m,T )
d = #(guess milk first|milk first is true) = #(m,M)

Let the margins (i.e., fix a+ b, c+ d, a+ c, b+ d) be fixed.

Table 2. Observed Data: One of the permutation
of (a, b, c, d) = (3, 1, 1, 3)

what lady says t t t t m m m m
the true order T T T M T M M M

Null Hypothesis

Let p1 be the probability the lady says tea first and in reality the
true order is also tea first.
Let p2 be the probability the lady says milk first but in reality
the true order is tea first.
Notation: let p1 = p2 = p, and this becomes our null hypothesis,
H0.

Why can we do permutations?

Answer: Under the null hypothesis distribution we
count the number of tables which can be formed with the
same marginal counts, but have a more extreme statis-
tic.

Table 3. One possible scenario (permutation) of
(a, b, c, d) = (2, 2, 2, 2)

what lady says m m t t t t m m
the true order T T T M T M M M

After the margins were fixed, we empty the cells of a, b, c and ,d.
We focused on the column of the true order which was tea first. The
question is: How many combination of ways can we fill in the empty
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Table 4. One possible scenario (permutation) of
(a, b, c, d) = (1, 3, 3, 1)

what lady says t m m t m t m t
the true order T T T M T M M M

Table 5. One possible scenario (permutation) of
(a, b, c, d) = (0, 4, 0, 4)

what lady says m m m m t t t t
the true order T T T T M M M M

cells of a, b, c, and d?

Imaging that each a, b, c, and d are fluctuating, we are sure that
they meet the marginal constraints. We know that in our example,
we have one more known condition for the both marginal constraints:
n = a+ b+ c+ d. We also know that there are two groups of samples
in which each group has a certain amount of cups of tea. In one group,
we have tea first (mark them with T), and it has a+ c cups of tea. In
the other group we have b + d cups of tea with milk first (mark them
with M). We keep tracking of them with a hidden sticker (so that lady
can’t see it, but we won’t forget which cup is tea first, and which is milk
first). Under this setting, we know that there are n choose a+c number
of ways to make these eight cups of tea to be tea first. Likewise, there
are n choose b + d number of ways to make these eight cups of tea to
be milk first.

On the other hand, suppose we have a friend that doesnt know which
cup has the true result of having the tea or milk poured first. That
means she is required to guess. After each guess is made, she labels
the cup with her guess, e.g., guess tea first (t), or guess milk first (m).
Before she makes these guesses, we don’t know a, b, c, and d. But now
we can actually break (a+ c) to be two integers, and it’s similarly with
(b+ d).

Now, if we have
a+ b ≥ a+ c

c+ d ≥ a+ c

then b ≥ c and d ≥ a. Likewise, we have b ≤ c, and d ≤ a.
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Suppose now the given case is b ≤ c, and d ≤ a. Then we can
write down the following Chu-Vandermonde formula:(

n

a+ c

)
=

a+c∑
k=0

(
a+ b

k

)(
c+ d

a+ c− k

)

We can give a combinatorical argument that there are two ways
to choose a + c from n balls, or to assign a + c guesses to the
group of cups that are true with tea first (likewise, there are n
choose b + d ways to assign b + d guesses to the group of cups
that are true with milk first). The second way to do the same
thing is we make k number of guesses from a+b trials, and make
another (a+ c)−k number of guesses from c+d trials. Then the
number of ways to do this is

(
a+b
k

)(
c+d

a+c−k

)
In total there are a+ c

branches, so we need to sum all of them (that is, k is running
from 0 to a+ c).(

4

0

)(
4

4

)
+

(
4

1

)(
4

3

)
+

(
4

2

)(
4

2

)
+

(
4

3

)(
4

1

)
+

(
4

4

)(
4

0

)
=

(
8

4

)
= 70

Each branch represents a certain scenario of the permutation
that may be observed. Hence we can write them in Table 6.
Let’s denote S := success in guessing and F := failed in guessing.
Since we already knew the whole configuration space and each
branch of the possible outcome, we can calculate the probability
of each possible outcome.

In general, we have

(1) Total =

(
n

a+ c

)
=

a+c∑
k=0

(
a+ b

k

)(
c+ d

(a+ c)− k

)

It follows that we can derive the probability for each case in the
above table as follows:

(2) P (success count = 0) =

(
4
0

)(
4
4

)∑4
j=0

(
4
j

)(
8−4
4−j

)
(3) P (success count = 1) =

(
4
1

)(
4
3

)∑4
j=0

(
4
j

)(
8−4
4−j

)
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Table 6. Probability of Each Permutation.

Success count Histogram (permutation of selection) #(permutations)

Only focus on a and c cells For tea first is true column

0 FFFF
(

4
0

)(
4
4

)
= 1× 1 = 1

(a = 0, c = 4, k = 0)

1 FFFS, FFSF, FSFF, SFFF
(

4
1

)(
4
3

)
= 4× 4 = 16

(a = 1, c = 3, k = 1)

2 FFSS, SFSF, SFFS, FSFS, SSFF, FSSF
(

4
2

)(
4
2

)
= 6× 6 = 36

(a = 2, c = 2, k = 2)

3 FSSS, SFSS, SSFS, SSSF
(

4
3

)(
4
1

)
= 4× 4 = 16

(a = 1, c = 3, k = 1)

4 SSSS
(

4
4

)(
4
0

)
= 1× 1 = 1

(a = 4, c = 0, k = 0)

Total
∑4

j=0

(
4
j

)(
8−4
4−j

)
=
(

8
4

)
= 70

(4) P (success count = 2) =

(
4
2

)(
4
2

)∑4
j=0

(
4
j

)(
8−4
4−j

)
(5) P (success count = 3) =

(
4
3

)(
4
1

)∑4
j=0

(
4
j

)(
8−4
4−j

)
(6) P (success count = 4) =

(
4
4

)(
4
0

)∑4
j=0

(
4
j

)(
8−4
4−j

)
It follows that the number of successes is distributed according to the
hypergeometric distribution. Suppose we use the convention of
significance level α = 0.05, i.e., 5%.

Now, we have three cases, and the notion of p-values naturally
emerges by considering these three cases:
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Case 1: Success count = 4 (same as success count = 0)
The probability for the lady to correctly guess all 4 samples (choose
from 8 cups of tea) is: P(all possible cases with 4 success)=

(
4
0

)(
4
4

)∑4
j=0

(
4
j

)(
8−4
4−j

) =
1

70
= 0.014 < 0.05

We can reject the null hypothesis (i.e., the hypothesis that the lady
doesn’t have the ability to distinguish can be rejected, if case 1 hap-
pens).

Case 2: Success count = 3 (same as success count = 1)
The probability for the lady to correctly guess all 4 samples (choose
from 8 cups of tea) is: P(all possible cases with 4 success)=

(
4
0

)(
4
4

)
+
(

4
1

)(
4
3

)∑4
j=0

(
4
j

)(
8−4
4−j

) =
1 + 16

70
= 0.2429 > 0.05

We failed to reject the null hypothesis.

Case 3: Success count = 2
The probability for the lady to correctly guess all 4 samples (choose
from 8 cups of tea) is: P(all possible cases with 4 success)=

(7)

(
4
0

)(
4
4

)
+
(

4
1

)(
4
3

)
+
(

4
2

)(
4
2

)∑4
j=0

(
4
j

)(
8−4
4−j

) =
1 + 16 + 36

70
= 0.6142 > 0.05

We failed to reject the null hypothesis.
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Summary I

Let X represent the “True order is Tea First” column in Table 1
and correspond to the marginal constraint: a+ c is fixed.
Let Y represent the “True order is Milk First” column in Table
1 and correspond to the marginal constraint: b+ d is fixed.
In general, for each specific observation, we have

(8) P (X = a) = P (Y = d) =

(
a+b
a

)(
c+d
c

)(
n
a+c

) =

(
d+c
d

)(
b+a
b

)(
n
d+b

)
=

(a+ b)! · (c+ d)! · (a+ c)! · (b+ d)!

a! · b! · c! · d! · n!
.

We can see that for two by two contingency tables, we have the
following mirror symmetry: a↔ d, c↔ b, and X ↔ Y .

Notice that the probability in each of the above cases is calculated
by using observed data and so far we only considered the one-tailed,
i.e., we just derived the notion of p-value. Let’s summarize the above
argument in the following (more formal way to state the definition of
p-value which also includes the definition of the two-tailed test).

Definition 1. The p-value can be obtained in the following
three cases: If X is a random variable,

• P (X ≥ x|H)for right tail events
• P (X ≤ x|H)for left tail events
• 2 ·min{P (X ≥ x|H), P (X ≤ x|H)}for two tails events
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Summary II

In general, for computing p-value:
Suppose a < b (if not, we can swap a↔ b, c↔ d, i.e., swap the
two groups).

• Case A:
If a

(a+c)
≥ 0.5, then

(9) p− value = P (X ≥ a) =
a+c∑
k=a

(
a+b
k

)(
c+d

a+c−k

)(
n
a+c

)
• Case B:

If a
(a+c)

< 0.5, then

(10) p− value = P (X ≤ a) =
a∑
k=0

(
a+b
k

)(
c+d

a+c−k

)(
n
a+c

)
Let’s summarize the meaning of p-value:

• The smaller the p-value, the less odds for the observed samples
to occur, thus the premise (H0 is true) is wrong.Therefore we
reject the null hypothesis.
• The smaller p-value, it is less likely that one can make a mistake

if the null hypothesis is abandoned.

2.2. Method II: (The conventional approach).

In this method we are going to use binomial distribution, and con-
ditional probability to prove the same result.

Suppose X = a = the number of true order is tea first and the lady
also says (guesses) tea first (i.e., a correct guess).
Suppose Y = c = the number of true order is tea first but the lady
says (guesses) milk first (i.e., a wrong guess).
Again, H0 : p1 = p2 = p.
Then under H0, we have:

• n1 = (a+ b), n2 = (c+ d), x = a, z = a+ c
• X ∼ BIN(n1, p)
• Y ∼ BIN(n2, p)
• X + Y ∼ BIN(n1 + n2, p)

We can derive a hypergeometric pmf as follow:
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Claim

(11) P (X = x|X + Y = z) =

(
n1

x

)(
n2

z−x

)(
n1+n2

z

)
Proof. Now, we break this down to three pieces:

(12) P (X = x) =

(
n1

x

)
px(1− p)n1−x

(13) P (Y = z − x) =

(
n2

z − x

)
pz−x(1− p)n1+n2−z

(14) P (X + Y = z) =

(
n1 + n2

z

)
pz(1− p)n1+n2−z

On the other hand, we can rewrite 11 as follows:

(15) P (X = x|X + Y = z) =
P (X = x ∩X + Y = z)

P (X + Y = z)

=
P (X = x ∩ Y = z − x)

P (X + Y = z)
=
P (X = x)P (Y = z − x)

P (X + Y = z)

=

(
n1

x

)
px(1− p)n1−x

(
n2

z−x

)
pz−x(1− p)n1+n2−z(

n1+n2

z

)
pz(1− p)n1+n2−z

.

=

(
n1

x

)(
n2

z−x

)(
n1+n2

z

)
which is hypergeometric distribution, and this completes the proof. �

Therefore, according to the above derivation, what we have justified
what we should do when the given data is a two by two contingency
table is to use Fisher’s Exact Test.

Question

What does it mean by “exact”?

Answer: In an exact test, we compute p-value to reject the null
hypothesis. Next, we should give a formal definition.

Definition 2. To call a test exact is to say that the test must allow an
exact probability to be assigned to each of the possible outcomes.
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For instance, an exact test at significance level 1% will in the long
run reject true null hypotheses exactly 1 % of the time.

Properties: (when should we use exact tests?) It is all about
sample size. An exact test is especially used when sample sizes are
small. Thus, the usage of exact tests is: it’s used as an asymptotic test
will not provide a good result.

Strictly speaking, in an exact test, all the assumptions of the distribu-
tion of the test statistics must be met and this opposes an approximate
test because in an approximate test, we can increasing the sample size
close as desired test statistics.

Question

Why is Fisher’s test “exact”?

Answer: Fisher’s test, we can safely say it is exact, because the
sampling distribution (conditional on the marginals) is known exactly,
hence no matter what size of the sample is given, the p-value is “ex-
actly” computed.

3. Part II: Implementations of Algorithms

Our goal in Part II is to develop the best implementation
of Fisher’s Exact Test we can get within the time constraint
of finishing this project, and with a large sample size, but
without using Yates’ approximation[5].

3.1. Problem: choose(n,k) in R doesn’t work for large n. Based
on the above understanding, one should be able to implement this
Fisher’s Exact Test in R. More exactly, to implement a generalize for-
mula of equation 7 to compute p-value. However, we confronted a
computation problem.
Data source: CNN: exit polls–national president (viewed as tables)[4].
https://www.cnn.com/election/2016/results/exit-polls

We have 20 sets of data from 20 different questions, and in order
to develop our own algorithm to derive a rather precise Fisher’s Exact
Test result, we use the following example (compare to Table 1, now the
sample size is increased from 8 to 24558) as our starting point.
3.2. Our First Attempt.
Problem: without re-scaling approximation, and use choose(n,k)
in R, we obtained NaN (not a number).
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Table 7. A Division by Gender Behind 2016 President
Exit Polls (24558 respondents)

Doesn’t Support
Trump

Support Trump Total (margin)

Men 48% := a 52% := b 100%

Women 59% := c 41% := d 100%
Total a+ c = 107% b+ d = 93% n = 200%

(margin)

#H_0: men and women are equally likely to "support Trump"

fisher_exact_p_value_fractional_input_no_approximation<-

function(N, a, b, c, d){

temp <- 0

if (a>b)

{

temp<-b

b<-a

a<-temp

temp<-c

c<-d

d<-temp

}

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("Men","Women", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

A<-floor(N*a)

B<-floor(N*b)

C<-floor(N*c)

D<-floor(N*d)

#raw data

v[1,1]<-floor(a*N)

v[1,2]<-floor(b*N)

v[2,1]<-floor(c*N)

v[2,2]<-floor(d*N)

v[1,3]<-floor((a+b)*N)

v[2,3]<-floor((c+d)*N)

v[3,1]<-floor((a+c)*N)

v[3,2]<-floor((b+d)*N)
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v[3,3]<-floor((a+b+c+d)*N)

show(v)

p<-(((choose((A+B),A))*(choose((C+D),C)))/(choose(N,A+C)))

# probability of the observed data

N<-A+B+C+D

#The results that are more extreme:

# (1) fix the Row Total and Column Total

# (2) if a<0.5, then sum all the cases from 0 to a*N

# if a>=0.5, then sum all the cases from a*N to N

# (3) defrive the remaining three cells by using (1)

p_sum<-p

if(a>=0.5)

{

for(i in A+1:A+C)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_N<-new_A+new_B+new_C+new_D

p_sum<-p_sum +

(((choose((new_A+new_B),new_A))*(choose((new_C+new_D),new_C)))

/(choose(new_N,new_A+new_C)))

}

}

if(a<0.5)

{

for(i in 0:A-1)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_N<-new_A+new_B+new_C+new_D

p_sum<-p_sum +

(((choose((new_A+new_B),new_A))*(choose((new_C+new_D),new_C)))

/(choose(new_N,new_A+new_C)))

}

}

print(p_sum)

return (p_sum)

}



FISHER’S EXACT TEST 15

p_approx<-fisher_exact_p_value_fractional_input_no_approximation(N=24558,

a=0.52, b=0.41, c=0.48, d=0.59)

Output in the console of R Studio:

Result: Apparently, choose(n,k) function in R doesn’t work
for this large number. Hence, we tried to implement the same
function but with a scaling to get an approximation result.
3.3. Our Second Attempt.
Scale n from 24558 to 100.
First of all, we can use fisher.test in R to compute the same scaled
data. If one doesn’t specify “less” or “greater”, then a two-tailed test
is considered. “greater” (or “less”) refers to a one-sided test compar-
ing a null hypothesis that p1 = p2 to the alternative p1 > p2 (or p1 < p2)

# Scale n from 24558 to 100

A<-41#floor(100*b)

B<-59#floor(100*d)

C<-52#floor(100*a)

D<-48#floor(100*c)

TeaTasting <-

matrix(c(A, B, C, D),

nrow = 2,

dimnames = list(Support = c("Yes", "No"),

Gender = c("Men", "Women")))

fisher.test(TeaTasting, alternative = "less")

TeaTasting

Result:
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Therefore, we should obtain p-value= 0.07 in our implementation.
Furthermore, if we set α = 0.05, then the p-value is about 0.07 > 0.05,
so we failed to reject null-hypothesis under this scaled idea.

fisher_exact_p_value_fractional_input_approximation<-

function(N, a, b, c, d){

N<-100

temp <- 0

if (a>b)

{

temp<-b

b<-a

a<-temp

temp<-c

c<-d

d<-temp

}

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("Men","Women", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

A<-floor(N*a)

B<-floor(N*b)
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C<-floor(N*c)

D<-floor(N*d)

#raw data

v[1,1]<-floor(a*N)

v[1,2]<-floor(b*N)

v[2,1]<-floor(c*N)

v[2,2]<-floor(d*N)

v[1,3]<-floor((a+b)*N)

v[2,3]<-floor((c+d)*N)

v[3,1]<-floor((a+c)*N)

v[3,2]<-floor((b+d)*N)

v[3,3]<-floor((a+b+c+d)*N)

show(v)

n<-A+B+C+D

p<-(((choose((A+B),A))*(choose((C+D),C)))/(choose(n,A+C)))

p_sum<-p

if(a>=0.5)

{

for(i in (a*(A+C))+1:(A+C))

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_n<-new_A+new_B+new_C+new_D

p_sum<-p_sum +

(((choose((new_A+new_B),new_A))

*(choose((new_C+new_D),new_C)))/(choose(new_n,new_A+new_C)))

}

}

if(a<0.5)

{

for(i in 0:(a*(A+C))-1)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_n<-new_A+new_B+new_C+new_D

p_sum<-p_sum +

(((choose((new_A+new_B),new_A))

*(choose((new_C+new_D),new_C)))/(choose(new_n,new_A+new_C)))

}

}

print(p_sum)
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return (p_sum)

}

p_approx<-fisher_exact_p_value_fractional_input_approximation(N=24558,

a=0.52, b=0.41, c=0.48, d=0.59)

Output in the console of R Studio:

Except the scaled part, we can say this is computation is correct, be-
cause if one compares this result (one-tailed) to several online contin-
gency table calculators, one could find that they’re consistent. Fur-
thermore, we will see that this Fisher’s Exact Test is very sensitive in
scaling the sample size, although we keep the ratios (a/n, b/n, c/n, d/n)
the same as the given data. But, in our following two attempts, we can
see that if one can compute the data by using the original sample size,
then we can derive a extremely small p-value, and with the same sig-
nificance level α = 0.05, we should actually reject the null-hypothesis.
3.4. Our Third Attempt.
This attempt is for paving the way for the next attempt, because we
need a control group (benchmark) to compare our implementation. So,
let see what result we can get by using the original sample size with
fisher.test function in R.

# without scaling

n<-24558 #24558 respondents

a<-0.52

b<-0.41

c<-0.48

d<-0.59

A<-floor(24558*b)

B<-floor(24558*d)

C<-floor(24558*a)

D<-floor(24558*c)

TeaTasting <-

matrix(c(A, B, C, D),
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nrow = 2,

dimnames = list(Support = c("Yes", "No"),

Gender = c("Men", "Women")))

fisher.test(TeaTasting, alternative = "less")

TeaTasting

Output in the console of R Studio:

Let’s calculate the error between scaled and non-scaled results. By
using fisher.test, we can only know an upper bound of the p-value:
2.2e− 16 = 2.2× 10−16, so we can know the error rate is at least this
large:

(16) Error% =
|Exact value− Approximate value|

Exact value
× 100%

(17)

=
(0.07805452)− 2.2e− 16

2.2e− 16
× 100% = 3.5477272727272627× 1012%

Although we just scaled down the sample size with a fraction 1
245.58

,
the error is amplified by this exact test, or more precisely speaking,
the hypergeometric distribution.
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3.5. Our Fourth Attempt.
In this attempt, we implemented our own code with dhyper function.
Apparently, we beat the Fisher’s Exact Test implementation in R, be-
cause we obtain a smaller p-value. Our implementation:

fisher_exact_p_value_fractional_input<- function(N, a, b, c,

d){

temp <- 0

if (a>b)

{

temp<-b

b<-a

a<-temp

temp<-c

c<-d

d<-temp

}

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("Men","Women", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

A<-floor(N*a)

B<-floor(N*b)

C<-floor(N*c)

D<-floor(N*d)

#raw data

v[1,1]<-floor(a*N)

v[1,2]<-floor(b*N)

v[2,1]<-floor(c*N)

v[2,2]<-floor(d*N)

v[1,3]<-floor((a+b)*N)

v[2,3]<-floor((c+d)*N)

v[3,1]<-floor((a+c)*N)

v[3,2]<-floor((b+d)*N)

v[3,3]<-floor((a+b+c+d)*N)

show(v)

# Method: Use dhyper(x, m, n, k, log = FALSE),

# x=A, n=C+D, k=A+C

p_Mathod_A<-dhyper(x=A, m=A+B, n=C+D, k=A+C, log = FALSE)

#H_0: men and women are equally likely to "support Trump"



FISHER’S EXACT TEST 21

N<-A+B+C+D

#The results that are more extreme:

# (1) fix the Row Total and Column Total

# (2) if a<0.5, then sum all the cases from 0 to a*100

# if a>=0.5, then sum all the cases from a*100 to 100

# (3) defrive the remaining three cells by using (1)

p_sum<-p_Mathod_A

if(a>=0.5)

{

for(i in A+1:A+C)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_N<-new_A+new_B+new_C+new_D

p_sum<-p_sum+dhyper(x=new_A, m=new_A+new_B, n=new_C+new_D,

k=new_A+new_C, log = FALSE)

}

}

if(a<0.5)

{

for(i in 0:A-1)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_N<-new_A+new_B+new_C+new_D

p_sum<-p_sum+dhyper(x=new_A, m=new_A+new_B, n=new_C+new_D,

k=new_A+new_C, log = FALSE)

}

}

print(p_sum)

return (p_sum)

}

p_value_mA<-fisher_exact_p_value_fractional_input(N=24558,

a=0.52, b=0.41, c=0.48, d=0.59)

Output in the console of R Studio:
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Discussion.
We can see that this p-value is way smaller than the result we derived
from the fisher.test function, which is implemented in R packages. This
is because the function didn’t implement in the way we wanted (it uses
a simpler formula without Saddle point correction which produces a
larger error). Since the modern computer has a finite amount of data
it can hold, to obtain a result in a reasonable time, each package has a
certain approximation for a large input number in binomial coefficients.
The approximation functions of Hypergeometric Distribu-
tion and Binomial Coefficients are all increasing functions
therefore we don’t want the probability to diverge. So the
criterion we used to justify which implementation is better
is to compare the output to see which one can have a smaller
output.

It is reasonable to believe the p-value we obtained in our own imple-
mentation is more accurate and much closer to the exact value. If one
uses the default function fisher.test, one can only know an upper bound
of the p-value: 2.2e−16, but in our implementation, we know the value
is 1.950922e−132 = 1.950922×10−132 which is 116 order of magnitude
smaller than the bound given by R Core Team’s implementation.
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To Unlock Next Level

It follows that our implementation can tolerate a larger num-
ber of sample sizes. But, we should not stop here. Our next
question is how can we beat our implementation? If one
really would love to do this, then one needs to dig out how this
approximation formula of binomial coefficients was implemented
by R Core Team[3].

After looking up the official documents of R[3] for dhyper, one
will see the following:

and so we go into the next level (looked up the dbinom), and
found this

After reading Catherine Loader’s manuscript[2], one could
know that, dhyper, the function we used in our implemen-
tation is based on Saddle Point Approximation. Hence,
the dhyper function, we used is implemented by using Saddle
point method. Furthermore, when the input is large enough
this[3] implementation can fail at 1017 level. However, this
number is totally reachable in real data. For instance, in
our examples in the next section, we consider data with the
sample size: n = 24558. Now, 24558!

.
= 3.547 × 1097151

which is not a small number. Nevertheless, once the reader
builds up a thorough understanding on how to derive the as-
ymptotic formula like what Catherine Loader did, then reader
should be able to derive as many higher order terms as one needs.
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4. Part III: Application of Part II Using Real Data

Sources.
After developing, and implementing our code in R, we now can use the
algorithm we developed to analyze 20 questions about the President
Donald Trump done by CNN. The 21th data were collected manually
from debate.org. We traced back to each user that voted on that web-
page[6].

Implementations.
First of all, since the code is almost the same, we just enclosed them
into four functions. The first two functions are implemented using the
algorithm we developed in Part II. The control group (benchmark, to
compare the result obtained from our algorithm) is function 3 and 4.
The reason why we implemented it in this way is because we have two
different data types. For the CNN data, we only knew the total number
of respondents and the fractions of each category. These fractional data
are corresponding to function 1 and function 3. On the other hand, for
the integral (non-fractional) data, we don’t need to convert it. This
is because the object-oriented coding style we wrote for the other two
functions can handle this case which are function 2 and function 4.

Significance Level: we reject H0 if p-value< 1% (α = 0.01).

##### Data Analysis #####

#source https://www.cnn.com/election/2016/results/exit-polls

#Define Funciotn

##### function 1 with fractional input #####

fisher_exact_p_value_fractional_input<- function(N, a, b, c,

d, Col, Row){

temp <- 0

if (a>b)

{

temp<-b

b<-a

a<-temp

temp<-c

c<-d

d<-temp

}

v<- matrix(ncol=3, nrow=3)

colnames(v)<-Col#<- c("Men","Women", "Column Total")
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rownames(v)<-Row # c("Yes, Support Trump","No, Against

Trump", "Row Total")

A<-floor(N*a)

B<-floor(N*b)

C<-floor(N*c)

D<-floor(N*d)

#raw data

v[1,1]<-floor(a*N)

v[1,2]<-floor(b*N)

v[2,1]<-floor(c*N)

v[2,2]<-floor(d*N)

v[1,3]<-floor((a+b)*N)

v[2,3]<-floor((c+d)*N)

v[3,1]<-floor((a+c)*N)

v[3,2]<-floor((b+d)*N)

v[3,3]<-floor((a+b+c+d)*N)

show(v)

p_Mathod_A<-dhyper(x=A, m=A+B, n=C+D, k=A+C, log = FALSE)

N<-A+B+C+D

p_sum<-0

p_sum<-p_Mathod_A

if(a>=0.5)

{

for(i in A+1:A+C)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_N<-new_A+new_B+new_C+new_D

p_sum<-p_sum+dhyper(x=new_A, m=new_A+new_B,

n=new_C+new_D, k=new_A+new_C, log = FALSE)

}

}

if(a<0.5)

{

for(i in 0:A-1)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_N<-new_A+new_B+new_C+new_D
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p_sum<-p_sum+dhyper(x=new_A, m=new_A+new_B,

n=new_C+new_D, k=new_A+new_C, log = FALSE)

}

}

print(p_sum)

return (p_sum)

}

#### function 2 non-fractional input ###############

fisher_exact_p_value_non_fractional_input<- function(N, a, b,

c, d, Col, Row){

temp <- 0

if (a>b)

{

temp<-b

b<-a

a<-temp

temp<-c

c<-d

d<-temp

}

v<- matrix(ncol=3, nrow=3)

colnames(v)<-Col

rownames(v)<-Row

A<-a

B<-b

C<-c

D<-d

#raw data

v[1,1]<-a

v[1,2]<-b

v[2,1]<-c

v[2,2]<-d

v[1,3]<-(a+b)

v[2,3]<-(c+d)

v[3,1]<-(a+c)

v[3,2]<-(b+d)

v[3,3]<-(a+b+c+d)

show(v)

p_Mathod_A<-dhyper(x=A, m=A+B, n=C+D, k=A+C, log = FALSE)

N<-A+B+C+D

p_sum<-0

p_sum<-p_Mathod_A

if((a/(A+C))>=0.5)

{
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for(i in A+1:A+C)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_N<-new_A+new_B+new_C+new_D

p_sum<-p_sum+dhyper(x=new_A, m=new_A+new_B,

n=new_C+new_D, k=new_A+new_C, log = FALSE)

}

}

if((a/(A+C))<0.5)

{

for(i in 0:A-1)

{

new_A<-i

new_B<-v[1,3]-new_A

new_C<-v[3,1]-new_A

new_D<-v[3,2]-new_B

new_N<-new_A+new_B+new_C+new_D

p_sum<-p_sum+dhyper(x=new_A, m=new_A+new_B,

n=new_C+new_D, k=new_A+new_C, log = FALSE)

}

}

print(p_sum)

return (p_sum)

}

#### function 3 Control Group (benchmark) #####

fisher_test_fractional_input<- function(N, a, b, c, d){

A<-floor(24558*b)

B<-floor(24558*d)

C<-floor(24558*a)

D<-floor(24558*c)

TeaTasting <-

matrix(c(A, B, C, D),

nrow = 2,

dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))

p_less<-(fisher.test(TeaTasting, alternative = "less"))

print(p_less)

p_greater<-(fisher.test(TeaTasting, alternative = "greater"))

print(p_greater)

}

#### function 4 Control Group (benchmark) #####
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fisher_test_non_fractional_input<- function(N, a, b, c, d){

TeaTasting <-

matrix(c(a, b, c, d),

nrow = 2,

dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))

p_less<-(fisher.test(TeaTasting, alternative = "less"))

print(p_less)

p_greater<-(fisher.test(TeaTasting, alternative =

"greater"))

print(p_greater)

}

############################

# Data_1_age

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("18-44","45 and older", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.39

b<-0.52

c<-0.61

d<-0.48

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 8.777315e-185

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_2_race

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("white","non-white", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.57

b<-0.21

c<-0.43

d<-0.79

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0
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fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_3_college graduate

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("college graduate","non-college graduate",

"Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.42

b<-0.51

c<-0.58

d<-0.49

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 2.87179e-89

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_4_income

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("under $100k","$100k or more", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.45

b<-0.47

c<-0.55

d<-0.53

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 4.575248e-06

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "less") gives p-value

= 4.574e-06

# Result: reject H_0, our implementation works

# Data_5_marital status

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)
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colnames(v)<- c("married","unmarried", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.52

b<-0.37

c<-0.48

d<-0.63

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 1.88984e-246

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "less") gives p-value

< 2.2e-16

# Result: reject H_0, our implementation works

# Data_6_how often do you attend religious services?

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("monthly or more","less often than that",

"Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.53

b<-0.39

c<-0.47

d<-0.61

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 1.177908e-213

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_7_served in the u.s. military

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("veterans","non-veterans", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.60

b<-0.44

c<-0.40

d<-0.56
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p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 3.133147e-277

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_8_were you born a u.s. citizen?

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("yes","no", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.49

b<-0.31

c<-0.51

d<-0.69

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_9_first-time voter?

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("yes","no", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.38

b<-0.47

c<-0.62

d<-0.53

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 7.583563e-91

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "less") gives p-value

< 2.2e-16

# Result: reject H_0, our implementation works

# Data_10_when did you decide presidential vote?
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n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("in the last month","before that", "Column

Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.48

b<-0.45

c<-0.52

d<-0.55

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 1.467703e-11

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value = 1.467e-11

# Result: reject H_0, our implementation works

# Data_11_illegal immigrants working in the u.s. should be:

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("offered legal status","deported to home

country", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.33

b<-0.83

c<-0.67

d<-0.17

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_12_how is the fight against isis going?

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("well","badly", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.22

b<-0.68
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c<-0.78

d<-0.32

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_13_in your vote, were supreme court appointments:

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("important","not important", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.49

b<-0.39

c<-0.51

d<-0.61

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 7.188362e-111

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "less") gives p-value

< 2.2e-16

# Result: reject H_0, our implementation works

# Data_14_does the country’s criminal justice system:

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("treat all fairly","treat blacks unfairly",

"Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.73

b<-0.22

c<-0.27

d<-0.78

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "less") gives p-value

< 2.2e-16
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# Result: reject H_0, our implementation works

# Data_15_feelings about the federal government

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<-

c("enthusiastic/satisfied","dissatisfied/angry", "Column

Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.19

b<-0.57

c<-0.81

d<-0.43

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_16_opinion of government

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("government should do more","government doing

too much", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.22

b<-0.72

c<-0.78

d<-0.28

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_17_opinion of barack obama as president

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("approve","disapprove", "Column Total")
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rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.10

b<-0.89

c<-0.90

d<-0.11

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_18_opinion of hillary clinton

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("favorable","unfavorable", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.03

b<-0.81

c<-0.97

d<-0.19

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "greater") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_19_opinion of donald trump

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("favorable","unfavorable", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.95

b<-0.15

c<-0.05

d<-0.85

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0
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fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "lessr") gives

p-value < 2.2e-16

# Result: reject H_0, our implementation works

# Data_20_does clinton’s use of private email bother you?

n<-24558 #24558 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("yes","no", "Column Total")

rownames(v)<- c("Yes, Support Trump","No, Against Trump",

"Row Total")

a<-0.69

b<-0.06

c<-0.31

d<-0.94

p_value<-fisher_exact_p_value_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0

fisher_test_fractional_input(N, a, b, c, d)

# fisher.test(TeaTasting, alternative = "less") gives p-value

< 2.2e-16

# Result: reject H_0, our implementation works

# Data_21

#source http://www.debate.org/polls/Trump-trade-war-with-china

n<-28 #28 respondents

v<- matrix(ncol=3, nrow=3)

colnames(v)<- c("< 20 yr of age","\u2265 20 yr of age",

"Column Total")

rownames(v)<- c("Support Trump","Oppose Trump", "Row Total")

a<-7

b<-7

c<-8

d<-6

fisher_exact_p_value_non_fractional_input(N=n,

a,b,c,d,colnames(v),rownames(v))

# p_value = 0.5

fisher_test_non_fractional_input(N=n, a, b, c, d)

# fisher.test(TeaTasting, alternative = "less") gives p-value

= 0.5

# Result: Failed reject H_0, our implementation matchs the

result from fisher.test
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5. Part IV: Saddle Point Approximation

5.1. Why Saddle Point Approximation? Back to the last subsec-
tion of Part II, we already saw that the p-value we obtained is way
smaller than the one we got from the fisher.test implementation in
R. We have seen this result in Part III, for example, in Data 7, the
fisher.test method can only give an upper bound, but our implemen-
tation can give an exact number (smaller than that bound, for sure).
So, why does this happen? In that section, we have seen the R docu-
ments for dbinom, and dhyper. Hence, we should also take a look at
fisher.test, since we already used it as the control group (benchmark).

If one clicks the URL (http://www.netlib.org/toms/643), one can
download the FORTRAN code that was used by this fisher.test function
in R. Hence, as long as one takes some time to read this code, one can
find the the relevant part of our work in the following screenshot:

From this source code, one can know that what’s under the hood of
fisher.test is the logarithms of factorial functions that is derived from
Stirling formula. This tells us why the function we used (dhy-
per in function 1 and 2 in the previous section) can give
us more precision. The function dbinom was used in dhy-
per and dbinom is implemented a formula derived by using
Saddle Point Approximation. Since the Stirling formula is
a result of the Saddle Point Method and the approximation
formula in dbinom has a higher order correction, the log(n!)
doesn’t have a high precision.
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The goal of this section is twofold: first, we want to understand
how Saddle Point Approximation works in Catherine Loader’s imple-
mentation of dbinom. Secondly, we will try to derive a more accurate
binomial coefficient formula (a simpler form was implemented in R with
less number of error correction terms), compared to the one in [2], and
was implemented by R Core Team[3], and will implement this in our
future work.

Although this method is usually covered in Complex Analysis, ac-
cording to Wikipedia, it’s definitely worth to learn for Statistics. Be-
cause “It provides a highly accurate approximation formula
for any PDF or probability mass function of a distribution,
based on the moment generating function.” Hence, this method
is not only useful in improving the implementation of Fisher’s Exact
Test, but in general, is used in Mathematical Statistics.

5.2. What Is Saddle Point Approximation? The Laplace integral
and stationary phase are in fact special cases of the general saddle point
approximation. Hence, let’s consider a more general setting beyond the
Laplace’s method and the notion of stationary phase (for example Airy
function, and WKB method)[7]:

(18) I(N) =

∫ b

a

dzg(z)eNf(z), N � 0,

where f(z) is a complex analytic function. Setting f(x, y) = u(x, y) +
v(x, y). Also, for our purpose, let N be a positive integer.
Then, intuitively, one may expect I(N) to be dominated by maxi-
mum of u(x, y). Also, one needs the stationary point, z0, of v(x, y).
That is, f ′(z) = 0 is needed. Indeed, we only expect Saddle Point as
extrema, reason being u(x, y) and v(x, y) satisfies Laplace′s equation:

∂2u

∂x2
+
∂2u

∂y2
= 0

implies

∂2u

∂x2
< 0⇒ maximum in x direction

and
∂2u

∂y2
> 0⇒ maximum in y direction.

Hence we expect the integral to be dominated by the Highest Saddle
Point (on the saddle), z0. Then, we can deform the contour Γ
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to include z0, near z0, by Cauchy Theorem, and then we have[7]

f(z) w f(z0) +
1

2
f ′′(z0)(z − z0)2, g(z) = g(z0),

and then I(N) becomes

I(N) w g(z0)eNf(z0)

∫
Γ

dz exp

(
1

2
Nf ′′(z0)(z − z0)2

)
.

Our next goal is to determine the direction of steepest descent. Now,
if we set

z − z0 = reiφ, and f ′′(z0) = |f ′′(z0)|eiθ.
The angles (φ, θ) determines how we approach the Saddle
Point. We now have

I(N) w g(z0) exp(Nf(z0))

∫
dreiφ exp

(
1

2
N |f ′′(z0)|r2eiθ+2iφ

)
.

We can make a convenient choice to render integral simple. Let θ+2φ =
π. Hence,

φ =
π − θ

2
,

and

I(N) w g(z0) exp(Nf(z0))eiφ
∫
dr exp

(
−1

2
N |f ′′(z0)|

)
.

By extending the integration range to ±∞, we can perform the
Gaussian integral, then we can obtain an approximation of I(N):

I(N) w g(z0) exp(Nf(z0))eiφ
(

2π

N |f ′′(z0)|

) 1
2

,

where φ = π−θ
2

.

To recover stationary method: instead of having θ+2φ = π, we have
θ + 2φ = π

2
. Hence,∫

dx exp

{
N

2
f ′′(z0)(z − z0)2

}
= e−

iθ
2

+iπ
4

∫
dr exp

(
iN

2
|f ′′(z0)|r2

)
.

Also, to recover to Laplace’s method, we use saddle point on a real axis
with ∂2u

∂x2
< 0, then∂

2u
∂y2

> 0, then we can go through the saddle point

along real axis with φ = 0, θ = π, and f ′′ < 0.
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5.3. How To Derive Saddle Point Approximation of Binomial
Coefficients? Consider the following representation of Binomial Co-
efficients: (

N

M

)
=

∮
C

dz
1

2πi

(1 + z)N

zM+1

where C is a unit circle around origin.

Actually, it’s quite straightforward to understand this formula be-

cause the numerator in the fraction (1+z)N

zM+1 can be easily written as bi-
nomial expansion, or Taylor expansion. Then after canceling the power
by its denominator, it results in a Laurent series. By Residue Theorem,
it follows that only zM term makes a contribution. Hence, we obtained
the 2πi×winding number, i.e., here it’s the binomial coefficient. There-
fore, to only get

(
N
M

)
, we must to divide this result with 2πi.

Now, consider large N , M , we can set M = Ny, and turn the integral
representation into(

N

M

)
=

∮
C

dz
1

2πi

1

z
exp (N (log(1 + z)− y log(z))))

Identifying the Saddle Point:
Let f(z) = log(1 + z)− y log(z). Then

f ′(z) =
1

1 + z
− y

z
, f ′′(z) =

−1

(1 + z)2
+
y

z

Thus,

f ′(z0) = 0⇒ z0 =
y

1− y

f(z0) = −y log(y)− (1− y) log(1− y)

f ′′(z0) =
(1− y)3

y
.

Please keep in mind that the integrand only has Simple Pole at z = 0.
Therefore, we can deform the contour to include z0. Also, since z0 is
on the real axis, f ′′(z0) is real value and θ = 0. Hence φ = π

2
(which is

going through the contour from imaginary direction.) Therefore,
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(19)

(
N

M

)
w

1

2πi

eiφ

z0

eNf(z0)

(
2π

Nf ′′(z0)

) 1
2

(20)

=

(
1

2πNy(1− y)

) 1
2

exp (−N (y log(y) + (1− y) log(1− y))) .

where M = Ny.

The approximation formula (20) is a more accurate form that one
should implement in R. This is the origin of the simplified form that
was implemented in [3] and by using the same procedure of this section,
one can derive Stirling’s formula. By using Stirling’s formula, one can
derive the approximation of log(n!) which is used in fisher.test. From
here, we can understand why our implementations (function 1 and 2
in Part III) are more accurate than fisher.test when we take a large
sample size n. Because under the hood, fisher.test didn’t directly
use Saddle Point Approximation. It uses the approximation based on
Stirling’s formula. Hence, after we have learned Saddle Point Approx-
imation, we can think of it as an approximation of an approximation,
i.e. the second layer of approximation brings unnecessary errors.

5.4. Error Estimation and in Practice. Once we derived the for-
mula (20),(

N

M

)
w

(
1

2πNy(1− y)

) 1
2

exp (−N (y log(y) + (1− y) log(1− y)))

by using the power series of exponential function, let’s define a partial
sum:

Sn :=

(
1

2πNy(1− y)

) 1
2

n∑
j=0

(−N (y log(y) + (1− y) log(1− y)))j

j!

we can rewrite (20) as follows:

(21)

(
N

M

)
w Sn +O(xn)

where
x := (−N (y log(y) + (1− y) log(1− y)))

Therefore, if one gives us an ε > 0, where ε depends on the computation
power of one’s machine, we can have control over the approximation.
That is, we can decide how many terms of Saddle Point Approximation
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we want to implement in our customized R program. So, let ε > 0 be
given, we can choose L > 0, L is a positive integer, such that

(22)

∣∣∣∣(NM
)
− SL

∣∣∣∣ =
∣∣O(xL)

∣∣ < ε

in other words, to implement this (20), we have two choices: one
is to use the exact form (if we have a super computer), or we only
implement a finite term (the finite partial sum, Sn, and choose n = L)
to reach the precision we need on our local machine.
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6. Part V: Conclusions

In the first part, we built up our own theory from scratch. The ad-
vantage of doing this kind of approach is that it can show us the essence
of how hypergeometric distribution fits into Fisher’s Exact Test. We
can know that the essence is to enumerate how many extreme tables
we could have. Hence, to go above 2 by 2 table, we can just hold this
idea in mind and naturally figure out one’s own way to enumerate an
r by c table.

In the second part, we developed our own algorithm, and used fisher.test
as our benchmark. We found that our implementation can have a bet-
ter precision than the benchmark. We also read the R documents and
found out in the source code that the dhyper function was implemented
by using the Saddle Point Algorithm.

In Part III, in all 21 samples, the algorithm (implemented as func-
tion 1 and function 2) we developed worked really well. In some cases,
our implementation could give a more meaningful value (rather than
just an upper bound provided by fisher.test function).

On the other hand, we can see that in the first 20 samples that were
collected from CNN.com, the null hypothesis were successfully rejected,
so CNN did a good job on their data visualization. This also means the
categories they chose to present are statistically meaningful, according
to Fisher’s Exact Test. Our algorithm and its implementations worked
in all 21 examples. In the 21st data sample, the null hypothesis got
rejected. This also shows us that when sample size is small, both meth-
ods (our implementations and R Core Team’s[3] fisher.test) agree with
each other.

In Part IV, we revisited Part III and investigated the possible sources
of error of the fisher.test. We derived (20) and in future work, we can
implement the Saddle Point Approximation (20) into our code. The
result (20) and the procedure in deriving (22) allows us to reach any
precision we want. Also, by learning this method, we can estimate the
error of the p-value. To outlook the future work (that due to time
constraint we couldn’t cover them in this paper): a more detailed in-
vestigation and implementation to improve our function 1 and 2 can
be done based on our work in this paper.
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Since we started from scratch and derived this complete form of ap-
proximation of binomial coefficients, in the future we can have control
over the precision of p-value using Fisher’s Exact Test and other p-
value tests. By using the moment generating function and our demo
as a template, this provides a highly accurate approximation formula
for any pdf or pmf of a distribution. Also, we believe this paper is
especially useful for anyone who wants to implement their own algo-
rithm and who wants to tackle the challenge to develop and implement
a more efficient and precise software than the default function in R
packages.
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