
Home
Syllabus
Lecture Notes
Assignments

Project 1

David Galles
Computer Science
Univerisity of San

Francisco

Computer Science 245: Data Structures and Algorithms

Programming Assignment 1: Playing withSound
Due Date: 2/22/2016

Sound
Sound waves are compressions of air.

Sound waves are an inherently analog phenomena, to represent them in a digital domain, we
need to sample them. We choose a sampling rate (say, 10000 samples a second) and then
every 1/1000th of a second, we record the value of the wave at that point. We then save all of
these samples, and that is our internal representaion of the sound.

Sometimes we want to record multiple channels of sound. For instance, stereo headphones
have 2 separate channels of sound (one for the left ear, and one for the right). Surround sound
systems can have even more channels -- 5.1 has 6 channels: Front-Left, center, Front-Right,

https://www.cs.usfca.edu/~galles/cs245/cs245S16.html
https://www.cs.usfca.edu/~galles/cs245/cs245syllabusS16.html
https://www.cs.usfca.edu/~galles/cs245/lecture/lecture16.html
https://www.cs.usfca.edu/~galles/cs245/cs245AssignmentsS16.html
http://www.cs.usfca.edu/galles
http://www.cs.usfca.edu/
http://www.usfca.edu/
https://en.wikipedia.org/wiki/Sound

back-left, back-right, subwoofer.

Linked Lists
For the first project, You will implement a data structure that stores and manipulates sound
clips using a linked-list structure. Speficially, sounds will be stored as a linked list of samples,
where each sample is a linked list of the sampled values for each channel. For example, a
SoundList for a 3-channel sound containing 4 samples would look something like the
following:

Note that your are NOT ALLOWED to use ArrayList, java.util.LinkedLists, or any other
element from the Java collection framework to create you MusicList -- you need to create
your own Linked List ENTIRELY FROM SCRATCH. Also, you should NOT use arrays of
any kind to store your MusicList (though you will need to use arrays as parameters / return
values of some of your methods

But ... But ...

I can already hear you saying:

But arrays woould be more effiient!
But using ArrayLists is much easiear!
But in the real world we will use libraries!

All valid points, however:

The point of this assignment is to get comfortable with linked lists. I tried to come up
with a compelling application, but the point is to learn to manipulate linked structures,
not to create the best possible implemenation of a sound library.
In this instance, easier is not better -- remember that the point is to learn how to use
somewhat complicated linked structures.
Before you can use libraries effectively, you need to know exactly how they are
implemented (that is sort of the point of this class!) Be glad I have not given you an
assignmment that cannot easily use the Java libraries! (Yes, such problems exist! I have
needed to solve them in the wild. They are also very. very difficult. Fun, but difficult!)

Implementation
You will implement the following interface:
MusicList.java

import java.util.Iterator;
public interface MusicList
{
 public int getNumChannels();

 public float getSampleRate();
 public int getNumSamples();

https://www.cs.usfca.edu/~galles/cs245/soundList/MusicList.java

 public float getDuration();
 public void addEcho(float delay, float percent);
 public void reverse();
 public void changeSpeed(float percentChange);
 public void changeSampleRate(float newRate);
 public void addSample(float sample);
 public void addSample(float sample[]);
 public Iterator<float[]> iterator();
 public Iterator<Float> iterator(int channel);
 public void clip(float startTime, float duration);
 public void spliceIn(float startSpliceTime, MusicList clipToSplice);
 public void combine(MusicList clipToCombine, boolean allowClipping);
 public void makeMono(boolean allowClipping);
 public MusicList clone();
}

Where:

getSampleRate Returns the sample rate of this sound clip. This one is easy, you just
need to return the sampleRate that was used when the SoundList was created
getNumSamples Returns the number of samples in the list. This should be stored (and
not recalculated each time getNumSamples is called
getDuration Returns the duration of the clip, in seconds. Relatively easy to compute
given the number of samples and the sample rate
addEcho Adds an echo effect to the soundList
reverse Reverses the list of samples. Helpful for finding backmasked messages, like
Paul is dead
changeSpeed(float percentChange) Change the speed of the SoundList. A
percentChange of 1.0 leaves the sound unchanged, while 2.0 makes the clip twice as
fast (also twice as high!) Can be easily accomplished by just changing the sample rate,
and leaving hte samples alone
changeSampleRate(float newRate) Change the sample rate to to a new value. This is
the most difficult of all of the methods
addSample(float sample) Adds a sample to the end of the SoundList. If the SoundList
is not single-channel, thiis method should throw and IllegalArgument exception
addSample(float sample[]) Adds a sample to the end of the SoundList. If the length of
the sample array is not the same as the number of channels in the SampleList, throw an
IllegalArgument exception
Iterator<float[]> iterator() Returns an iterator to traverse the SoundList. Each call to
next returns an array of samples, one for each channel
Iterator<Float> iterator(int channel) Returns an iterator to traverse a single channel
of the SoundList
clip(float startTime, float duration) Clips the SoundList by throwing away all
samples before the startTime (in secounds), and after the duration (in seconds). So, if
the SoundList was 6 seconds long, and we called clip(4,2), the new SoundList would
be 2 seconds long (and would consist of samples from second 4 to second 6 of the
original SoundList)
spliceIn(float startSpliceTime, MusicList clipToSplice) Splice clipToSplice into this
clip, starting at startSpliceTime
combine(MusicList clipToCombine, boolean allowClipping) Add the waveform of
clipToCombine to this clip. If allowClipping is true, clip all samples in the range -1, 1.
If allowClipping is false, rescale resuting waveform to be in the range -1, 1
public void makeMono(boolean allowClipping); Combine all channels into one. If
allowClipping is true, clip all samples in the range -1, 1. If allowClipping is false,
rescale resuting waveform to be in the range -1, 1
MusicList clone() Return a clone (deep copy) of the SoundList

Test Files
UPDATED We have provided the file TestMain.java to help you test your MusicList
implementation. Now updated to test clip and iterator(channel) methods.

Assignment
For your first assignemnt, you will

https://en.wikipedia.org/wiki/Backmasking
https://en.wikipedia.org/wiki/Paul_is_dead
https://www.cs.usfca.edu/~galles/cs245/soundList/TestMain.java

Implement a class named MusicLinkedList that implements the MusicList interface.
The constructor for your NusicLinkedList should take as an input parameters the
sample rate (float) and the number of channels (int)
You are Not Allowed to use any Java Collections: No ArrayList, no LinkedList! You
need to create your own linked structure for this project!
Your MusicList should not store any arrays at all -- use linked structures only. (Yes,
you could make an arguement that arrays would be a better fit for at least part of this
assignment, but this is a linked list assignment)
Your MusicList should be able to handle an arbitrarily large number of channels.

Due Date
Your MusicList class should be checked into subversion by Monday, Feb 22nd, 2016.

Submission
Submit your files using subversion. Your files should be stored in the subversion In fact, I
recommmend that you don't wait until you program is done to get it into subversion, start
right away to protect yourself. The subverion directory you should use for this proect is
https://www.cs.usfca.edu/svn/username/cs245/project1/, where username is your cs
username.

Collaboration
It is OK for you to discuss solutions to this program with your classmates. However, no
collaboration should ever involve looking at one of your classmate's source programs! It is
usually extremely easy to determine that someone has copied a program, even when the
individual doing the copying has changed identifier names and comments.

Provided Files
The following files are provided. Note that you need to use the interfaces as they are given,
so that you program will work correctly with the testing code that we will provide.

MusicList.java Your Class MusicLinkedList needs to implement this interface
JavaDoc Documentation of your required class and interface
SoundUtil.java Some utility functions for reading .wav files into SoundLists, and
playing SoundLists
TestMain.java Some test code
test2.wav Test file used in TestMain.java
one_four.wav Test file used in TestMain.java
two_three.wav Test file used in TestMain.java

Univeristy of San Francisco Department of Computer Science

https://www.cs.usfca.edu/~galles/cs245/soundList/MusicList.java
https://www.cs.usfca.edu/~galles/cs245/soundList/doc/MusicList.html
https://www.cs.usfca.edu/~galles/cs245/soundList/SoundUtil.java
https://www.cs.usfca.edu/~galles/cs245/soundList/TestMain.java
https://www.cs.usfca.edu/~galles/cs245/soundList/test2.wav
https://www.cs.usfca.edu/~galles/cs245/soundList/one_four.wav
https://www.cs.usfca.edu/~galles/cs245/soundList/two_three.wav

