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1 Introduction

In modern coding theory and cryptography, it is increasingly common to work with modules
over finite rings or group algebras. For example, one might design an error-correcting code over
the ring Z4 or over F,[z]/(f(z)), or develop a cryptosystem based on the hardness of problems in
certain quotient rings (as in lattice-based cryptography like NTRU or Ring-LWE).

In these settings, the structure of the underlying ring can have a profound impact on:

e The classification of code structures (e.g., Z4-linear codes vs. field-based codes).
e The security assumptions in cryptosystems (e.g., whether invertibility is easy to determine).
e The feasibility of algebraic attacks that exploit ring-specific properties.

A key tool in classifying rings and modules is the notion of semisimple algebras and their
opposites: rings with nonzero Jacobson radical. These lecture notes aim to provide a short,
accessible overview of how these concepts can appear in coding theory and cryptography, focusing
on finite dimensional (often finite) rings.

2 Recap of Key Definitions: Semisimple Rings and Jacobson Rad-
icals

Definition 2.1 (Semisimple Ring). A (unital) ring R is called semisimple if, as a left module over
itself, R is a direct sum of simple submodules. Equivalently, R is semisimple if J(R) = 0, where
J(R) is the Jacobson radical.

Definition 2.2 (Jacobson Radical). Let R be a ring (with identity). The Jacobson radical J(R)
is defined as the intersection of all maximal left ideals of R (equivalently, the intersection of all
maximal right ideals). One important property is that » € R lies in J(R) precisely if r acts
nilpotently on every simple left R-module.

Over a finite field (or more generally an Artinian ring), a standard theorem (Wedderburn—Artin)
tells us that R is semisimple if and only if R = [], M,,(D;), a direct product of matrix algebras
over division rings D;. Such a decomposition often simplifies problems in coding and cryptography
by reducing complicated module structures to direct sums of simple components.

3 Why Semisimplicity and Radicals Matter for Coding Theory

3.1 Linear Codes over Rings

Background. Classical coding theory usually focuses on linear codes over finite fields F,. How-
ever, researchers have studied linear codes over finite rings such as Z4 or Z,= because they can yield
interesting families of codes with good error-correcting properties (e.g. Lee distance codes over Zy).



Modules over Finite Rings. A linear code C of length n over a ring R can be viewed as
an R-submodule of R™. Analyzing submodules C' < R" can be more subtle if R is not a field
(since R™ is no longer a free module in the same sense if R has zero-divisors). The presence of a
nonzero Jacobson radical J(R) means that some elements of R act nilpotently on simple modules.
In practice, that can complicate decoding or hamper certain dimension arguments.

Semisimple vs. Non-Semisimple. If R happens to be semisimple (i.e. J(R) = 0), then every
R-module, in particular R", has a decomposition into simple summands. Submodules C' then break
down correspondingly. This decomposition can make analysis of syndrome decoding, dual codes,
and generator matrices more straightforward. Conversely, if R has a nontrivial radical, certain
pathologies (like zero-divisors that kill submodules or codewords) arise, and one must account for
radical elements carefully in code design and decoding algorithms.

3.2 Group Algebras and Group Codes

Group Codes. Another approach is to construct codes from group algebras Fy[G], where G is a
finite group. A code can be taken as an ideal (or a left ideal, right ideal, etc.) in F,[G]. In this
setting, the structure of Fy[G] as a ring heavily influences how we classify such codes.

Maschke’s Theorem and Semisimplicity. If char(F,;) does not divide |G|, then F,[G] is
semisimple (Maschke’s theorem). Hence every ideal in F,[G] decomposes into a direct sum of
minimal ideals, which correspond to irreducible representations of G. This complete reducibility
can simplify the enumeration of all possible group codes and their decoding.

When J(F,[G]) # 0. If p = char(F,) divides |G|, then J(F,[G]) # 0, the group algebra is no
longer semisimple, and one must carefully analyze the radical to understand how it annihilates
certain modules. From a coding perspective, radical elements can kill entire submodules, which
might yield degenerate or trivial codes unless handled appropriately. Still, group codes in such
cases can be interesting (e.g. leading to certain self-orthogonal or special structure codes).

4 Connections to Cryptography

4.1 Ring-Based Cryptosystems

Polynomial-Ring Constructions. Modern cryptography often uses rings of the form R =
Folz]/(f(x)) or Zlx]/(f(x)) (and sometimes higher-dimensional analogs) for cryptosystems like
NTRU, Ring-LWE, and others. While these rings are not always semisimple, they might factor
into simpler components (e.g. if f(z) factors over F,), or might have certain radical properties if
f(x) is not square-free.

Invertibility and the Radical. In many ring-based cryptosystems, one needs random elements
in R to be invertible with high probability, or one needs to perform sampling in an ideal quotient. If
R has a large Jacobson radical, invertibility can be more subtle and might require extra conditions
(like picking polynomials coprime to f(x)). From a security viewpoint, understanding J(R) can
help ensure the distribution of invertible elements is well-understood and not easily attacked.



Structure of Modules in Post-Quantum Cryptography. Certain lattice-based or module-
based cryptosystems rely on the hardness of finding short vectors in modules over polynomial rings.
If the ring were semisimple, it might decompose in ways that could (theoretically) simplify attacks,
though in practice one chooses f(x) to ensure difficulty of computations. Nonetheless, ring-theoretic
classification theorems can help evaluate potential vulnerabilities.

4.2 Secret Sharing and Zero-Divisors

Some secret sharing schemes or threshold cryptography protocols rely on polynomials over rings
with zero-divisors. A nontrivial radical J(R) might allow certain collisions or annihilation effects
that compromise security if not designed properly. For instance, an element r € J(R) might map
multiple distinct codewords (or shares) to the same outcome. By contrast, if R is semisimple, these
pathologies cannot occur in the same way because J(R) = 0.

5 Illustrative Example: Codes Over Z,

Why Z4?7 One of the simplest examples of a ring with a nonzero radical is Z4 = {0, 1,2, 3} under
addition and multiplication mod 4. The element 2 is a zero-divisor: 2 -2 = 0 (mod 4). In fact,
J(Z4) = (2) = {0,2} is nonzero.

Code Structure. A linear code C of length n over Z4 is a submodule of (Z4)". One can classify
such codes, but the presence of 2 as a nilpotent element (since 2-2 =0 (mod 4)) means that some
submodules can be annihilated by 2, leading to interesting code properties. The classical “Gray
map” is often used to interpret Z4-linear codes in terms of binary codes, revealing certain powerful
nonlinear codes in {0, 1}%".

Decoding and the Radical. Because 2 € J(Z,) kills half the elements in the ring (in a sense),
the code decomposition is not simply a direct sum of irreducibles (since Z4 is not semisimple).
Decoding strategies must account for this radical effect, which can sometimes be exploited to
produce good distance properties (e.g. 2 can spread error patterns under the Gray map).

6 Advanced Perspectives and Open Problems

e Module Decompositions in Quantum-Safe Cryptography: As post-quantum cryp-
tosystems increasingly rely on ring and module structures, deeper results on radicals and
semisimplicity might become relevant. For instance, advanced cryptanalytic techniques might
try to exploit ring decompositions or factorization of f(z) in Fy[x].

e Non-Semisimple Group Algebras and Code Constructions: When p | |G|, F,[G] is not
semisimple. There remain relatively unexplored questions about systematically constructing
error-correcting codes as ideals in F),[G] under these conditions, or using such codes in secure
communication.

e Zero-Knowledge Proofs over Rings with Radical: Some zero-knowledge protocols re-
quire proving knowledge of a solution to a linear equation over a ring. If the ring is not



semisimple, certain “ghost” components in the radical might provide hidden structures that
can be used maliciously (or beneficially) in protocols.

7 Ten Concrete Examples of Nontrivial Radicals in Rings and
Their Cryptographic Implications

This section presents ten concrete numeric examples of rings—each with potentially nontrivial
Jacobson radicals or specific factorization properties—to illustrate how such structures can open
new lines of cryptanalysis or enable novel cryptographic primitives. While these examples are small
and mainly serve didactic purposes, they reflect themes that arise in real-world systems at much
larger scales.

71 7y
Ring: R =17Z4=1{0,1,2,3} with addition and multiplication mod 4.
Radical:
J (R) - {07 2}7
since 2-2 =0 (mod 4). This shows 2 is nilpotent (of index 2).
Implication: Any cryptographic scheme or linear code over Z4 must handle the fact that 2
annihilates half of the elements (creating zero-divisors). This can lead to special distance properties
in codes (e.g. Gray-mapped Z4-codes) or vulnerabilities if invertibility is assumed without checking
the radical.
7.2 Example 2: Zy[z]/(2*> + 1)
Ring: R = Z4[z]/(2? +1).

Reasoning: Over Zy, the polynomial 22 + 1 may factor or remain irreducible mod 2; however,
regardless of factorization, Z, itself already has a nontrivial radical (see Example [7.1)).

Radical: Elements coming from 2 in the quotient remain nilpotent, and T could also be radical
if (#2 + 1) is not invertible. Hence J(R) includes images of (2) (and possibly more).

Implication: A naive cryptosystem using R might require inverting polynomials that become
zero-divisors under multiplication by 2. Adversaries could exploit such degeneracies to forge signa-
tures or break encryption schemes that do not carefully avoid the radical.

7.3 Example 3: Field Example (No Radical) Fy[z]/(z* + = + 1)

Ring:
R=Tz]/(z* +z +1).

Since 22 + x + 1 is irreducible over Fy, R is a field of size 4.



Radical:
J(R) = {0} (fields have zero radical).

Implication: Working over a field is simpler for both coding and cryptography, because every
nonzero element is invertible, and there are no zero-divisors. However, field-based approaches may
have smaller parameter spaces or other limitations (e.g. limited extension fields).

7.4 Example 4: Small Group Algebra F;3[G] with G = Z,
Group: G = Zo, the cyclic group of order 2.

Ring:
R = F3[G] = Fa[z]/(2* — 1).

Factorization: 22 —1= (z —1)(x + 1) in F3. Note that +1 are actually the same in F3, but we
still get two distinct factors.

Radical: Since char(Fs) does not divide |G| = 2, the group algebra is semisimple, so J(R) = 0.

Implication: If we switched to [y instead, then char(2) | |G|, and we would get a nontrivial
radical. In group-code constructions, semisimplicity or non-semisimplicity determines how ideals
decompose and thus how one can build or classify group codes.

7.5 Example 5: Fy[z|/((x +1)?)
Ring:
R = Fafal/ (o + 1?).

Factorization: (x + 1) is irreducible of degree 1 over Fo, but it appears twice in the polynomial
(x4 1)2.
Radical: (x + 1) is nilpotent in the quotient, so
J(R) = (x +1).
Implication: This ring is not a field. A cryptosystem using R must handle collisions or zero-

divisors arising from x 4+ 1. This might allow certain short-vector or collision attacks if the system
design assumes invertibility beyond what actually holds in the radical.

7.6 Example 6: IF5[$]/((IL‘2 +2x + 2)2)
Ring:
R = Fsz]/((«* + 22 + 2)2).

Factorization: 22 4 2z + 2 may or may not factor in F5. Even if it is irreducible, the square
(x2 + 22 + 2)2 introduces repeated roots.



Radical: The ideal generated by x2 4+ 2x + 2 is nilpotent, so it is contained in J(R). Indeed, that
entire factor forms the radical.

Implication: In a ring-based cryptosystem that tries to invert polynomials in R, the presence of
a repeated factor complicates invertibility. Attackers might target polynomials that vanish in the
radical to create collisions or to reduce the effective key space.

7.7 Example 7: NTRU-Style Construction with 2" — 1

Ring:
R = Z,[a]/(z" 1)

for some small prime g. For instance, let n = 8 and ¢ = 17.

Factorization: 2%—1= (z*—1)(2?+1). Over Fi7, one checks whether (z* —1) or (z*+1) have
repeated factors.

Radical: If either factor has repeated roots mod 17, that factor yields a nontrivial radical. If all
factors are distinct and square-free, the ring is closer to semisimple (though not necessarily fully
semisimple if the factorization involves irreps of different degrees).

Implication: NTRU-like schemes rely on inverting polynomials in R. Nontrivial radicals mean
some elements are noninvertible, potentially leading to special “collisions.” Attackers might exploit
knowledge of repeated roots or non-trivial radicals to find weaknesses or reduce the effective key
space.

7.8 Example 8: A Trapdoor Factorization in F;[z]

Ring:
R =TFolz]/(f(z)g(x)),

where f(x) and g(z) are distinct irreducibles of the same degree.

Trapdoor Setup: If the system designer knows the factorization f(x)g(x), but the factorization
is not publicly known, one could attempt a “trapdoor” cryptosystem. Over large fields and large
degrees, factoring might still be feasible, but in principle this is a classical idea.

Radical: If f(z) or g(z) appear more than once (repeated factor), it contributes to J(R). Oth-
erwise, if each appears exactly once, R might be semisimple.

Implication: The radical could hide partial information about codewords or ciphertexts. Alter-
natively, if factoring over 5 is not as hard as intended, an adversary can break the scheme. This
example highlights how factorization and radical theory can create or undermine cryptographic
trapdoors.



7.9 Example 9: Code-Based Construction in Fom[z]/(z" — 1)

Ring:
R =TFom[z]/(z" —1).

Factorization: z" — 1 can factor into distinct irreducibles or might have repeated factors. If
repeated, those factors yield nontrivial radicals.

Radical: If (2" — 1) is square-free in Fom [z], R is closer to a direct product of irreducible compo-
nents (hence semisimple). If not, the radical complicates the structure.

Implication: Such rings arise in cyclic or quasi-cyclic code constructions. Code parameters (e.g.
minimum distance, dimension) can be simpler to analyze in semisimple cases. Nonsemisimple cases
might yield codes with unusual properties or require more intricate decoding algorithms.

7.10 Example 10: Z[z]/(z" + 1) mod ¢ with a Known “Hidden” Radical
Ring:

R =7Z[z]/(z" +1) then reduce modulo g,
ie. R= (Z[z]/(z" + 1)) /{q) = Fqlz]/(z" + 1).

Factorization: If (z" + 1) has repeated roots mod ¢, it introduces a radical in R.

Implication: Ring-LWE or related lattice-based schemes often require that ™ +1 remain square-
free over F,. If an attacker finds a prime ¢ such that (2" + 1) factors with repeated roots, they
might exploit the radical to break certain cryptographic assumptions. This can act as a specialized
trapdoor prime.

These ten examples illustrate the interplay between:

e Nontrivial radicals (zero-divisors, nilpotent elements, collisions),
e Semisimplicity (direct sum decompositions, simpler invertibility),
¢ Polynomial factorization (square-free vs. repeated factors),

e Cryptographic security (potential trapdoors, attack surfaces).

Although small, each example shows how ring-theoretic structure can lead to unique advan-
tages or pitfalls in both coding theory (distance properties, decoding complexity) and cryptography
(invertibility, key distribution, collisions). In real-world systems, these issues arise at a much larger
scale but remain fundamentally governed by the same algebraic principles.

8 Cryptography Over Rings: NTRU and Ring-LWE

In modern public-key cryptography, especially in the context of post-quantum schemes, a major
trend is to use polynomial quotient rings in place of classical structures like integer moduli. Two
prominent examples are the NTRU family of schemes and cryptosystems based on the Ring-LWE
(Learning With Errors) problem.



8.1 NTRU Cryptosystems

Originally introduced by Hoffstein, Pipher, and Silverman in the 1990s, NTRU relies on the diffi-
culty of finding short vectors in a certain convolution structure. Concretely, one often works in a

ring of the form
R=2Zx]/(z" —1) or Zglx]/(z" —1),

where n is chosen so that polynomial multiplication can be done efficiently. A user’s secret key
is typically a pair of “small” polynomials (f,g) in R, whereas the public key is a polynomial
h = f~'-g (mod q) (under some conditions ensuring invertibility). Encryption and decryption
exploit the structure of polynomial multiplication in R, along with reduction by a small norm.

Relevance to Ring Theory.

e If (™ — 1) factors in certain ways or if ¢ is chosen so that R has a nontrivial radical, it can
affect the distribution of invertible elements and potentially open avenues for cryptanalysis.

e NTRU'’s security relies on the hardness of finding short vectors in a lattice associated with
R, not just on factorization. However, ring decompositions can sometimes be used to analyze
sublattices or subrings.

8.2 Ring-LWE

Introduced by Oded Regev in the context of LWE (Learning With Errors) and later specialized to
ring structures by Vadim Lyubashevsky, Chris Peikert, and others, Ring-LWE leverages the idea
of adding a “noise term” to polynomial samples in a quotient ring

_ Z[z] ~ Fylz]
fa = gan/ @ %

where f(x) is typically chosen to be a polynomial like 2" 4+ 1 or ™ — 1.

Core Idea. Just as in standard LWE, one has samples of the form
(CL, a-s+e) € Rq XR(]’

where s is the secret “short” polynomial (the analog of a secret vector in classical LWE) and e is a
small noise polynomial. Distinguishing such samples from uniform random pairs is conjectured to
be hard for appropriate choices of f(x) and noise distribution.

Ring-Theoretic Considerations.

e If f(x) is not square-free mod ¢, R, may have a nontrivial radical, complicating invertibility
or introducing zero-divisors. This can sometimes reduce the security level or force additional
constraints on f(x) and g.

e On the other hand, the algebraic structure of R,—especially if it is semisimple—helps keep
multiplication efficient and maintain well-defined error growth properties.



8.3 Security and Implementation Details

In both NTRU and Ring-LWE, one key benefit of polynomial quotient rings is efficiency:
e Polynomial multiplication can be done via FFT-like algorithms in O(nlogn) time.

e If R is chosen to be semisimple, the ring is more straightforward to analyze; if R has a non-
trivial radical, one must ensure it does not enable any “collisions” that compromise security.

Despite these ring-theoretic considerations, the core difficulty typically lies in the lattice perspec-
tive (finding short vectors in high-dimensional modules). Thus, cryptanalysts often combine ring
factorization checks with lattice attacks to probe the full security of such schemes.

8.4 Further Reading

For more in-depth exploration of these ring-based schemes:

e NTRU: Original references by Hoffstein, Pipher, and Silverman, or surveys on NTRU. Many
open-source libraries implement NTRU variants (e.g. libpgcrypto, OpenQuantumSafe).

e Ring-LWE: Works by Oded Regev, Vadim Lyubashevsky, Chris Peikert, and others, de-
tailing the hardness assumptions and noise analysis. The CRYSTALS-Kyber and NewHope
cryptosystems are examples of Ring-LWE implementations.

In both areas, the structure of the underlying ring—whether or not it is semisimple, how
polynomials factor, and the nature of its Jacobson radical—can significantly influence security,
parameter selection, and performance.

9 Conclusion and Further Reading

Understanding the Jacobson radical and semisimple structures is not just a pure algebraic
pursuit: it has direct ramifications in how codes are designed, how cryptosystems are secured,
and how one performs computations with modules over rings. In coding theory, a nonzero radical
can lead to codes with special properties (or complications), while in cryptography it can affect
invertibility, distribution of keys, or potential algebraic vulnerabilities.

For a deeper dive:

e Finite Ring Theory: Finite Rings with Applications to Combinatorics by T. Y. Lam pro-
vides an accessible treatment of radicals and semisimplicity in finite rings, including examples
of Z4-codes.

e Group Algebras: Representation Theory of Finite Groups by Benjamin Steinberg (and
other texts) discuss how group algebra decompositions relate to coding and representation.

e Cryptography over Rings: Surveys on Ring-LWE and NTRU give a sense of how poly-
nomial quotient rings factor into modern public-key cryptography. Many references (e.g.
works by Vadim Lyubashevsky, Chris Peikert, Oded Regev) detail ring-based assumptions in
post-quantum cryptography.
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Summary of Main Points

Semisimple rings have zero Jacobson radical and decompose into matrix algebras over
division rings. This can simplify module structure and code design.

Non-semisimple rings have a nontrivial radical J(R), which can introduce nilpotent ele-
ments. This can be beneficial (or problematic) in coding and cryptography, depending on
one’s design goals.

Group algebras and polynomial rings are prime examples in both coding theory and
cryptography, and their semisimplicity depends on characteristic and factorization properties.

Practical ramifications include code performance (distance properties, decoding complex-
ity) and cryptosystem security (invertibility, structural attacks, etc.).
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