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1 Introduction

These notes discuss basic concepts in ring and module theory, focusing on semisimple modules and
the Jacobson radical of a ring. We give definitions, some standard examples, and key theorems such
as Artin–Wedderburn. We also discuss why a ring A with zero Jacobson radical (i.e. J(A) = 0)
often exhibits “complete reducibility” of its modules.

Throughout, letA be a (possibly noncommutative) ring (often we assumeA is a finite-dimensional
algebra over a field, or at least Artinian) and let A-modules be left modules unless otherwise spec-
ified.

2 Historical Notes

The study of semisimple rings and modules has roots in the early 20th century, closely tied to
the work of Joseph Henry Maclagan Wedderburn (around 1908) on the structure of finite-
dimensional algebras over a field. Wedderburn showed that if an algebra A is semisimple (in modern

1



language), then it is isomorphic to a finite direct product of matrix algebras over division rings.
This result formed the cornerstone of what became known as the Wedderburn–Artin theory,
after Emil Artin generalized these ideas to more general Artinian rings.

The Jacobson radical is named after Nathan Jacobson, who in the mid-20th century intro-
duced a unifying definition of the radical as the intersection of all maximal left ideals (or right
ideals, for rings with identity). Jacobson’s approach systematically explained why certain ideals
behave “like nilpotent elements” in the sense of vanishing on all simple modules. His work built
on earlier ideas about “maximal nil ideals” or “quasi-regular elements” but gave them a coherent
modern framework.

Subsequently, mathematicians such as R. Baer, J. Levitzki, A. G. Kurosh, and S. A.
Amitsur extended Jacobson’s concepts into a broad radical theory, defining many other radicals
(prime radical, Baer radical, Levitzki radical, etc.) and studying their behavior in various classes
of rings. These developments showed how the notion of a radical could be abstracted and applied
in more general algebraic settings, including non-Artinian rings, rings without identity, and even
certain rings in universal algebra. Nevertheless, the Jacobson radical remains one of the most
central and influential of these constructions, due to its decisive role in characterizing semisimple
rings: a (left) Artinian ring A is semisimple if and only if J(A) = 0.

3 Semisimple Modules

Definition 3.1 (Simple and Semisimple Modules). Let A be a ring. An A-module S is called
simple if its only submodules are 0 and S itself.

An A-module M is called semisimple (or completely reducible) if it can be written as a direct
sum of simple modules:

M ∼= S1 ⊕ S2 ⊕ · · · ⊕ Sn for some simple A-modules Si.

Example 3.2. Over a field k, a vector space is simple as a module over itself precisely when it is
1-dimensional. Thus a k-vector space is semisimple (as a module over k) if and only if it is a direct
sum of 1-dimensional subspaces (i.e. it is just any vector space). So in this case, every module is
semisimple.

Proposition 3.3 (Basic Properties of Semisimple Modules). Let M be a semisimple A-module.
Then:

1. Every submodule U ≤ M is also semisimple.

2. Every quotient M/U is semisimple.

3. M is semisimple if and only if every submodule of M is a direct summand. In other words,
for any U ≤ M , there exists a complement W ≤ M such that M = U ⊕W .

Sketch of Proof. If M ∼=
⊕

i Si where each Si is simple, any submodule U is a direct sum of
some of these simple summands (one can prove this using a composition series argument or by
induction). Thus U is semisimple, and the quotient M/U is also a direct sum of simple modules.
For the statement about direct summands, the standard approach is to use the fact that semisimple
modules have projective covers, or to invoke Schur’s Lemma in the setting of finite dimensional
algebras, etc.
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4 Jacobson Radical

Definition 4.1 (Jacobson Radical). Let A be a ring. The Jacobson radical of A, denoted J(A),
is the intersection of all maximal left ideals of A. Equivalently (for rings with identity), it is the
intersection of all maximal right ideals of A. One can also characterize J(A) as the set of r ∈ A
that act nilpotently on every simple left A-module.

In symbols:

J(A) =
⋂

M⊂A
M max left ideal

M =
⋂

N⊂A
N max right ideal

N.

Remark 4.2. Intuitively, J(A) is the “largest nilpotent ideal” inside A in many senses. For finite
dimensional algebras, it coincides with the radical of the algebra used in the Artin–Wedderburn
decomposition.

Proposition 4.3. If A is a semisimple ring (i.e. semisimple as a left module over itself), then
J(A) = 0.

Sketch of Proof. If A is semisimple as a left module, then any element of J(A) must act as zero on
every simple A-module. In particular, consider the regular representation AA (the module A acting
on itself by left multiplication). If A is semisimple, AA is a direct sum of simple submodules. Since
J(A) annihilates every simple submodule, it must be zero in A itself.

5 Characterizations of Semisimple Rings

Recall that a ring A is called semisimple (on one side, say left) if it is semisimple as a left A-
module. Over an Artinian (or finite dimensional) ring, left semisimplicity, right semisimplicity, and
two-sided semisimplicity all coincide.

Theorem 5.1 (Classical Criterion for Semisimplicity). Let A be a ring which is Artinian (or at
least satisfies the descending chain condition on ideals). Then the following are equivalent:

1. A is semisimple (i.e. AA is a direct sum of simple modules).

2. J(A) = 0.

3. Every A-module is semisimple.

Idea of Proof. The heart of the proof is the observation that if J(A) = 0, then A can be embedded
into a direct product (or direct sum) of simple rings (via the map a 7→ (a+M1, . . . , a+Mn) where
Mi are maximal ideals whose intersection is {0}). Such a product is semisimple. Hence A itself
inherits semisimplicity. The other directions are handled by the standard theory of radicals and
composition series arguments.

Remark 5.2. If A is a finite dimensional algebra over a field k, then A is Artinian. So all of the
above equivalences apply. In this case, the Artin–Wedderburn theorem states that

A ∼= Mn1(D1)×Mn2(D2)× · · · ×Mnt(Dt),

where each Di is a finite dimensional division algebra over k.
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6 Embedding into a Direct Sum of Simple Modules

A construction often used in these proofs is the following:

• Pick maximal right ideals M1, . . . ,Mn such that M1 ∩ · · · ∩Mn = {0}.

• Define a map of left A-modules:

T : A −→
n⊕

i=1

A/Mi, a 7→ (a+M1, a+M2, . . . , a+Mn).

• The kernel of T is exactly M1 ∩ · · · ∩Mn, which is 0 by choice of Mi. Hence T is injective.

• Since each A/Mi is a simple left A-module (quotient by a maximal ideal), the direct sum⊕n
i=1A/Mi is semisimple.

• Consequently, A embeds into a semisimple left A-module, so if also J(A) = 0, we deduce A
itself is semisimple.

7 Complements and Short Exact Sequences

One important property of semisimple modules V is that every submodule U ≤ V has a direct sum
complement W , i.e. V ∼= U ⊕W . This makes short exact sequences

0 −→ U −→ V −→ V/U −→ 0

split. In particular:

Corollary 7.1. If V is a semisimple A-module, then every submodule U is semisimple and the
quotient V/U is semisimple.

Proof. By definition, V is a direct sum of simple modules. Any submodule U is a sum of some of
these simple summands (or possibly zero), so U is semisimple. Its quotient V/U is also a direct
sum of the remaining simple summands.

Example 7.2 (Counterexamples in Non-Semisimple Cases). If V is not semisimple, it can fail
to have such a direct complement. For instance, over Z4, the module Z4 (viewed over itself) is
not semisimple because it has nontrivial submodules that are not direct summands (e.g. 2Z4 is
a submodule isomorphic to Z2, but you cannot write Z4 as a direct sum Z2 ⊕ W in a way that
respects the Z4-module structure).

8 A Quick Look at the Artin–Wedderburn Theorem

Theorem 8.1 (Artin–Wedderburn). Let A be a finite dimensional semisimple algebra over a field
k. Then A is isomorphic (as an algebra) to a finite direct product of matrix algebras over division
algebras over k:

A ∼= Mn1(D1)×Mn2(D2)× · · · ×Mnr(Dr),

where each Di is a finite dimensional division algebra over k.
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This theorem fully classifies finite dimensional semisimple algebras. If k is algebraically closed,
each Di is just k itself, and so

A ∼= Mn1(k)×Mn2(k)× · · · ×Mnr(k).

9 Why Some Proofs are More Involved

The classification and structure theorems for semisimple modules can be proven in several ways.
The short proof typically relies on:

• The idea that J(A) = 0 forces complete reducibility.

• Splitting of short exact sequences for semisimple modules.

• Wedderburn’s theorem for finite dimensional semisimple algebras.

Longer proofs might break these arguments down further or proceed via explicit homological
algebra (projective modules, projective covers, etc.) or by carefully constructing complements for
each submodule. In a more advanced course, one might discuss injective/projective dimensions,
minimal projective resolutions, and so on, which can obscure the simpler direct sum arguments.

10 Further Applications

10.1 Mathematical and Theoretical Applications

Further Radical Theory. The Jacobson radical is only one of many radicals defined in ring
theory. Other important radicals include the prime radical (or Baer–McCoy radical), the Baer
radical, and the Levitzki radical, among others. Each radical is designed to capture a specific “bad
behavior” within a ring (e.g. nilpotency, solvability, etc.). These concepts form the basis of radical
theory, which has far-reaching consequences in:

• The classification of non-Artinian rings.

• Structure theory of rings without identity.

• Connections to universal algebra and varieties of algebras.

Wedderburn–Artin Theory and Beyond. TheWedderburn–Artin theorem classifies all semisim-
ple rings (which are automatically Artinian if unital). Its extension to non-commutative settings
and applications to group algebras, matrix rings, and operator algebras are central in:

• Representation Theory of Finite Groups: Over a field of characteristic zero, semisim-
plicity of the group algebra k[G] relates to Maschke’s theorem, ensuring all representations
decompose into irreducibles.

• Structure of Division Algebras: Central division algebras over fields are intimately con-
nected with the Brauer group, an active research area linking algebraic geometry and number
theory.
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• Homological Algebra and Derived Categories: Semisimple algebras have particularly
simple homological properties (e.g. projective dimension zero). This facilitates explicit com-
putations in derived categories of modules.

10.2 Applications in Physics and Computer Science

Physics.

• Quantum Mechanics and Quantum Field Theory: Many operator algebras arising
in quantum mechanics are (or can be reduced to) direct sums of matrix algebras over C.
Semisimple Lie algebras (a related but distinct concept in the Lie algebra setting) underlie
the classification of particle symmetries and gauge groups in quantum field theories.

• Symmetry Algebras and Representations: Physical systems with symmetry often use
representation theory to describe states and observables. The complete reducibility (semisim-
plicity) of certain symmetry algebras simplifies the decomposition of state spaces into irreps
(irreducible representations), directly impacting how physical particles or excitations are clas-
sified.

Computer Science.

• Computational Group Theory and Symbolic Algebra Systems: Algorithms that
compute irreducible representations of finite groups often rely on the group algebra’s semisim-
plicity (when the characteristic of the field does not divide the group order). Decomposing
modules into direct sums of simples is a fundamental step in these algorithms, which are
implemented in software like GAP, SageMath, and Magma.

• Coding Theory and Cryptography: Certain error-correcting codes and cryptographic
protocols involve modules over finite rings or group algebras. In some cases, understanding
the radical and semisimplicity helps classify the structure of these rings, leading to efficient
encoding/decoding or security arguments.

• Quantum Computing: While not as common as operator algebras in theoretical physics,
the study of finite-dimensional C*-algebras (which are direct sums of matrix algebras over
C) appears in certain formulations of quantum logic and quantum information. Complete
reducibility can simplify how quantum states and gates factor into simpler subsystems.

11 Summary

• Semisimple modules are direct sums of simple modules.

• A ring A is semisimple if A is semisimple as a module over itself (equivalently, it has zero
Jacobson radical and is Artinian).

• Artin–Wedderburn classifies semisimple algebras as finite products of matrix algebras over
division rings.

• Jacobson radical J(A) is the intersection of all maximal ideals (one or both sides). If A is
semisimple, J(A) = 0. Conversely, if J(A) = 0 and A is Artinian, then A is semisimple.
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• A semisimple module M has the property that every short exact sequence 0 → U → M →
M/U → 0 splits, giving M ∼= U ⊕ (M/U).

• These concepts and theorems find wide applications, both in further radical theory, Wed-
derburn–Artin theory, representation theory and beyond, and in more applied con-
texts such as physics, computational group theory, coding theory, and quantum computing.

These results form a cornerstone in the representation theory of finite dimensional algebras and
in module theory in general.
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