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I am fascinated by number theory, especially developing mathematical algorithms to solve
problems in connections between number theory to harmonic analysis, algebraic geometry,
complex dynamics, hyperbolic manifolds, thermodynamic formalism, Kleinian groups, and
knot theory. I was fortunate to conduct some preliminary work at the junction of these
academic fields during my senior year independent study on prime number theorem with
Prof. Paul Zeitz and continuing research with Prof. Chun-Kit Lai for my master thesis.
These initial steps, as well as my future plans, are explained here.
My Initial Steps Since I studied quantum field theory and statistical mechanics at National
Taiwan University, I have been trying to figure out what is causing the distribution of
non-trivial zeros in systems described by the Lee-Yang circle theorem and prime number
theorem. Instead of applying Wilsonian renormalization group treatment in statistical field
theory, the Lee-Yang circle theorem provides an alternate method for studying first-order
phase transition. The exciting part is that for a finite ferromagnetic Ising model, zeros
of the partition function of the system cluster around a unit circle. When we apply the
thermodynamics limit to this system, the zeros shift to a unit circle on the complex plane.
In other words, if we consider the vertical line z = 1

2
+ it to be a circle with infinite radius

containing non-trivial zeros of Riemann zeta function, and the zeta function to be a partition
function of a thermodynamic system, we can see the two systems share the same question:
what are the fundamental rules that determine the distribution?

The development of a technique to precisely compute the critical exponent δ(G) of a
Poincaré series of a geometrically finite non-elementary Fuchsian group G has a long history.
Motivated by this curiosity, I began my master thesis on a generalized problem by investi-
gating the line indicated by z = δ(G) + it. The critical exponent δ(G) plays a crucial role
in the prime geodesic theorem, similar to the line z = 1 + it in the prime number theorem
where the Riemann zeta function has its only singularity at the point z = 1 and no zeros
on this line as proved by von Mangoldt in 1895. In Patterson-Sullivan theory, δ(G) is the
Hausdorff dimension of the limit set of G. Furthermore, δ(G) uniquely determines the first
resonance of the corresponding Selberg zeta function of G, i.e. λ1 = δ(G)(1 − δ(G)), where
λ1 is the lowest eigenvalue of eigenfunctions of the Laplacian operated on a Riemann surface
(algebraic curve) H2/G.

In my MA thesis, a geometric method was developed to compute δ(G) by computing the
lower bound and upper bound of δ(G), where G are some Schottky groups that satisfy a
predefined set of conditions. Then, this might be the first time to derive a conjecture an
exact value of λ1 of a specific Schottky group. Furthermore, after reading Ahlfors’ lecture
notes [1] and other related developments about the actions of Kleinian groups in higher
dimensions, recently we are conjecturing and proving that this two-dimensional result is
also true in some higher dimensions. Since δ(G) is the convergence exponent of Poincaré
series of G, and this series can be written into a Dirichlet L-function, plus eigenfunctions
of H2/G are automorphic forms, hence an exact connection between number theory and
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harmonic analysis might possibly be established. It also can be considered as an example
that follows the philosophy of Langlands program that Dirichlet characters, algebraic curves,
and automorphic forms are interrelated.
Future Plans Beyond the scope of my master’s thesis, I would like to discover some generic
norms for more general setups in order to better understand the distribution of non-trivial
zeros, as well as provide more solid examples to lay the conceptual basis for linkages between
mathematics and physics. Mathematics is the language of physics. To unify general rela-
tivity and quantum field theory, we might need a dictionary to translate different dialects
physicists used in varied areas of mathematics to construct a rigid mathematical foundation.
I am excited to see what Langlands Program can tell us about this unification challenge.
Mathematics progresses as new objects to explore are discovered, as well as new structures
that embody some of the most important relationships - those between geometry, topology,
algebra, and analysis. Quantum field theory (QFT) provides both. Almost 300 years ago,
Newton attempted to understand Kepler’s planetary motion equations and establish a sys-
tematic means of thinking about infinitesimal change. This effort resulted in the creation
of classical mechanics and calculus, which mathematics assimilated and improved. I aim
to do something similar for QFT. This includes defining the essential features of QFT such
that future mathematicians do not need to examine the physical context in which the theory
evolved.

Not only does the critical exponent of the Poincaré series δ(G) plays an important role
in phase transition of ferromagnetic Ising models, as described by quantum field theory, but
it also has a crucial role in topological black holes, as described by the theory of general
relativity. Furthermore, because Ising models are widely used in quantum computing, it
would be intriguing to examine what consequences research in this area may have.

My long-term goal is to become a professor. Obtaining a PhD will allow me to continue
my research while also acquiring more teaching experience. After earning my PhD, I hope
to work in academia as a postdoctoral researcher or assistant professor, where I can combine
my interests in research and teaching. I aim to be able to give back to Taiwan by inspiring
students and developing their interest and enthusiasm for mathematics.
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