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1 Introduction

These notes survey several foundational topics in the theory of rings and modules, focusing on:

• The notion of semisimple (a.k.a. Jacobson semisimple) rings and modules.

• The Jacobson radical and its properties.

• Group algebras F [G] and Maschke’s Theorem.

• The center of a ring and how the radical intersects it.

• Nakayama’s Lemma.

• Some brief references to field extensions, Artin–Schreier polynomials, and Steinitz’s work on
field theory.

We assume familiarity with basic ring theory (ideals, modules, etc.) but will keep the exposition
accessible to upper-level undergraduates.
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2 Preliminaries and Definitions

2.1 Jacobson Radical

Definition 2.1 (Jacobson Radical). Let A be a ring (associative with unity). The Jacobson radical
of A, denoted J(A), is defined as

J(A) =
⋂

{ I ⊆ A : I is a maximal left ideal of A}.

Equivalently (by a standard theorem), J(A) is the intersection of the annihilators of all simple
A-modules:

J(A) =
⋂

V simple A-mod

Ann(V ).

Remark 2.2. If A is finite-dimensional over a field F , then J(A) is a nilpotent ideal, meaning
(J(A))n = 0 for some n ≥ 1. In fact, for finite-dimensional algebras over a field, J(A) coincides
with the radical in the sense of classical Artin–Wedderburn theory.

2.2 Semisimple Rings and Modules

Definition 2.3 (Semisimple (Artin–Wedderburn) Ring). A ring A is called semisimple (or Jacob-
son semisimple) if its Jacobson radical J(A) is zero. Equivalently (if A is Artinian), A is semisimple
if it is isomorphic to a finite direct product of matrix rings over division rings.

Definition 2.4 (Completely Reducible / Semisimple Module). An A-module V is said to be com-
pletely reducible (or semisimple) if it is a direct sum of simple A-modules.

Theorem 2.5 (Artin–Wedderburn). Let A be a semisimple ring that is finite-dimensional over
a field F . Then A is isomorphic to a finite direct product of matrix algebras over division rings.
Concretely,

A ∼= Mn1(D1)×Mn2(D2)× · · · ×Mnk
(Dk),

where each Di is a (possibly) different division algebra over F .

3 Group Algebras and Maschke’s Theorem

Let F be a field, and G a finite group. The group algebra F [G] is the F -vector space with basis
{g : g ∈ G} and multiplication induced by the group operation extended F -linearly:(∑

g∈G
αg g

)(∑
h∈G

βh h
)

=
∑

g,h∈G
αg βh (gh).

3.1 Maschke’s Theorem

Theorem 3.1 (Maschke). Suppose G is a finite group and F is a field whose characteristic does
not divide |G|. Then the group algebra F [G] is semisimple as a ring. In other words, J(F [G]) = 0.

Remark 3.2. The key reason is that |G| is invertible in F , so the element

e =
1

|G|
∑
g∈G

g

is a central idempotent in F [G], and this leads to a decomposition argument showing every F [G]-
module is semisimple.
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Corollary 3.3. If char(F ) = 0, then automatically F [G] is semisimple. For example, over C or
Q, all finite group algebras are semisimple.

3.2 Case char(F ) Divides |G|

If char(F ) divides |G|, then |G| is 0 in F , so 1/|G| does not exist in F . In this situation, F [G] is
not semisimple. One can show: ∑

g∈G
g ∈ J(F [G]),

and indeed J(F [G]) ̸= 0. Often one proves that
(∑

g∈G g
)

is nilpotent or that it generates a

nonzero nilpotent ideal, depending on further structure.

4 Nilpotent Ideals and Containment in the Radical

Definition 4.1 (Nilpotent Ideal). An ideal I in a ring A is nilpotent if there exists n ≥ 1 such
that In = 0.

Proposition 4.2. If I is a nilpotent ideal of A, then I ⊆ J(A).

Sketch of Proof. Let I ⊆ A be nilpotent. We want to show I annihilates every simple A-module
V . Indeed, if In = 0 for some n, then for any v ∈ V , the submodule InV = 0, so eventually one
can see I acts trivially on V (by a standard descending argument on powers of I or by considering
the fact that I must lie in every maximal left ideal). Hence I ⊆ Ann(V ) for every simple V . Thus

I ⊆
⋂

V simple

Ann(V ) = J(A).

5 Center of a Ring and Intersection with the Radical

Definition 5.1 (Center of a Ring). The center of a ring A is

Z(A) = { z ∈ A : za = az for all a ∈ A}.

It is straightforward to see that Z(A) is a commutative subring of A. Moreover, Z(A) is an
ideal in A if and only if Z(A) = A itself (i.e. A is commutative).

Proposition 5.2 (Intersection of Jacobson Radical with Center). We always have

J(A) ∩ Z(A) ⊆ J(Z(A)).

Furthermore, for finite-dimensional A, the intersection J(A) ∩ Z(A) is a nilpotent ideal in Z(A),
hence contained in the nilradical of Z(A).

Idea of Proof. By definition, J(A)∩Z(A) consists of central elements of A which are in the radical.
Such elements are also in the radical of the subring Z(A), denoted J(Z(A)). In a finite-dimensional
setting, this subring is Artinian, and so J(Z(A)) is nilpotent. Hence every element in J(A)∩Z(A)
is nilpotent (in fact, that entire intersection forms a nilpotent ideal in Z(A)).
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6 Nakayama’s Lemma

Definition 6.1 (Nakayama’s Lemma (Classical Form)). Let A be a ring with Jacobson radical
J(A), and let M be a finitely generated left A-module. Then

J(A)M = M =⇒ M = 0.

Equivalently, if N is a submodule of M such that M = N + J(A)M , then M = N .

Theorem 6.2 (Nakayama’s Lemma). If A is a ring with Jacobson radical J(A) and M is a finitely
generated A-module such that M = J(A)M , then M = 0. In a more general form, for any
submodule N ⊆ M , if M = N + J(A)M , then M = N .

Sketch of Proof. The standard proof involves picking a finite set of generators for M and using
the fact that 1 − x is invertible if x ∈ J(A). See any standard textbook in ring theory (e.g.
Atiyah–Macdonald, Lang’s Algebra) for details.

7 Field-Theoretic Asides: Artin–Schreier Polynomials and Steinitz

Remark 7.1. In the handwritten notes, there were references to towers of field extensions (Steinitz),
Artin–Schreier polynomials of the form xp −x−α over fields of characteristic p, and so on. These
are classical topics in field theory, showing how certain extensions are constructed in characteristic
p.

• Steinitz’s Theorem on Field Extensions (1910): Ernst Steinitz laid the foundation of
modern field theory, introducing the notions of prime fields, algebraic closure, separability,
etc.

• Artin–Schreier Extensions: In characteristic p > 0, an extension F (α)/F is called Artin–
Schreier if α satisfies a polynomial xp − x − c for some c ∈ F . These are analogous to
cyclotomic extensions in characteristic 0.

8 Summary of Key Points

• Jacobson Radical: J(A) is the intersection of all maximal left ideals, and for finite-
dimensional algebras, it is nilpotent. Nilpotent ideals lie in J(A).

• Semisimple Algebras: A is semisimple (a.k.a. has zero Jacobson radical) precisely when ev-
ery A-module is semisimple (completely reducible). By Artin–Wedderburn, finite-dimensional
semisimple algebras over a field decompose as products of matrix algebras over division rings.

• Group Algebras: For a finite group G over a field F , F [G] is semisimple if and only if
char(F ) does not divide |G| (Maschke’s Theorem).

• Nakayama’s Lemma: A fundamental result on modules over rings with nonzero Jacobson
radical, ensuring that J(A)M = M forces M to be zero (when M is finitely generated).

• Center and Intersection: J(A) ∩ Z(A) is contained in J(Z(A)), and in finite-dimensional
settings, that intersection is nilpotent in the center.
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References for Further Reading

• T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics.

• S. Lang, Algebra, Graduate Texts in Mathematics.

• M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra.

• N. Jacobson, Structure of Rings.

• E. Artin, Geometric Algebra, for a historical perspective on Artin–Schreier.

• E. Steinitz, Algebraische Theorie der Körper, 1910 (classical paper on field theory).
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