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Abstract. The big picture, big idea (question) of this talk is to
ask what numbers we can’t order for a McNuggets, and what’s the
largest number of the set of these numbers? Furthermore, to find
out the generalized solution of this question.
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1. Notations.

• Z = {...− 3,−2,−1, 0, 1, 2, 3, ...} these are integers.
• N = {1, 2, 3, ...} these are natural numbers.
• N0 = {0, 1, 2, 3, ...} these are natural numbers with zero in a

set.
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So, those would be the three sets we are talking about.

2. Definitions.

These are two things that were covered in the Day one Number
Theory. We will learn two things. The first thing we learn in number
theory is prime numbers, and it’s a very simple definition. Although
the version of the definition we can use for the algebraic number theory
is not the definition if we probably think of on top of our head. One
meaning of prime which is probably we thought about in high schools
is: positive integer greater than one is prime if and only if its only
factors are one and itself. Now, the version of this the one that are
going to more freely to be used in this talk is the second version of the
definition which goes like this:

Definition

Prime. A positive integer p > 1 is prime if whenever p|xy then
either p|x or p|y.

Here is a simplest version to write out the Fundamental Theorem of
Arithmetic:

Theorem

The Fundamental Theorem of Arithmetic. Every integer
x > 1 can be factored uniquely up to order as a product of prime
integers.

We got to show two things: a. to show the integer can be factored
as a product of primes which is a very good example of “well-ordering
theorem”. Then we got to argue that that factorization is prime up
to order as a product of primes. That means there is a unique list of
prime factors which is monotonically increasing such that that integer
is a product of the list of primes.

The Fundamental Theorem of Arithmetic

Given a positive integer x > 1 there is a unique list of prime
integers p1, p2, p3, ..., pk with p1 ≤ p2 ≤ ... ≤ pk−1 ≤ pk such that

x = p1 · p2 · p3 · ... · pk.

Examples are our friends. So, here is an example
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30 = 2 · 3 · 5 = 2 · 5 · 3 = 5 · 2 · 3 = 5 · 3 · 2 = 3 · 2 · 5 = 3 · 5 · 2.

My question: Is there is a unique factorization if the number
field is not Z, but like a set of all positive even integers.

The answer from the speaker: Yes, if you go to different
system, you may not have a unique factorization. So, my advice
is just hang on.

So, good we haven’t done anything harder, so we just done number
theory. In the following 2/3 of the talk we are going to take intergers
and smash them down and look at the subsets of them. Talk about
how will it look like to factor an integer in one of those subsets. Now, in
order to do that, we are going to use a really simple number theory idea.
So, the first part of the talk is based on the congruence relations.
We will use the simple congruence relation over Z defined by

a ≡ b( mod n)

if and only if

n|a− b in Z
Now, again there is a lot of different ways we can write this. For our
purpose today, we will keep focusing on integers mod 4, and mod 6. So,
again our goal is to keep things simple. We’re not going to look at any
thing mod 3193, or whatnot. To show something may go wrong with
factorization, but at the same time it made things become interesting
as well.

We are going to look at these two things: Let’s consider two simple
arithmetic sequences. This could be Day 1 in discrete math. We are
looking two very simple arithmetic sequences (What does it mean for
a sequence to be arithmetic? We start with a number, and we got
everything else by adding every successor number by the same amount).

But there are not just an arithmetic sequences. They have
some stronger properties. If we take any two elements of the first
sequence, and multiply them together, we get back another element in
this sequence. Why?
Well, assumed that we already knew a little bit about congruence.
So, we take a number that is congruence, let’s call it a, suppose it’s
congruent to 1 mod 4, now we take another number b which is also
congruent 1 mod 4, so the result is still 1 mod 4. So, that set of the
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sequence is multiplicative closed. This is also true for the second
sequence. However, this is not always the case if we randomly write
down an arithmetic sequence, it’s not going to be arithmetic closed.

So, the first sequence start at one, and every successor number add
up a four.

1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, ...

It’s a set of sequence congruence to 1 mod 4. It;s also called the
Hilber Monoid:

= {1 + 4k|k ∈ N0} = 1 + 4N0.

What is a monoid?

Definition

Monoid: which is (1) closed under an associative binary opera-
tion and (2) has an identity element I ∈ S such that for all a ∈ S,
Ia = aI = a. But its elements don’t need to have inverses.

There is a legend that “Hilbert used this monoid when he taught
courses in Elementary Number Theory to convince students of the ne-
cessity of proving the unique factorization property of the integers.”

In 1 + 4N0 we have

21 · 33 = 9 · 77

(3 · 7) · (3 · 11) = (3 · 3) · (7 · 11)

It’s clear that 9, 21, 33, and 77 can’t be factored in 1 + 4N0. However,
9, 21, 33, and 77 are not prime in the usual sense of the definition in
Z.

And the second sequence start at four, and every successor number
add up a six.

4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, ... = 4 + 6N0

It’s a set of sequence congruence to 0 mod 4. We obtain

70 · 22 = 154 · 10

(2 · 5 · 7) · (2 · 11) = (2 · 7 · 11) · (2 · 5)

It’s clear that 70, 22, 154, and 10 can’t be factored in 4+6N0. However,
70, 22, 154, and 10 are not prime in the usual sense of the definition in
Z. By appending 1 to this sequence we derive a monoid M= 4 + 6N0∪
{1} which is known as Meyerson’s Monoid.

It follows a basic observation: Both of these examples are extremely
elementary in nature.
Additionally, we have a big goal: To convince you that factorization of
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elements into irreducibles in the second example is far more complicated
similar factorizations in the first.

3. An Example in Almost Every Basic Abstract Algebra
Textbook

Let D = Z[
√

5]. In D, 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5) represents

a nonunique factorization into products of irreducibles in D. In order
to understand this, we must understand units and noms inD. The
previous examples avoid this problem.

4. New Notation

Let M be a commutative cancellative monoid written multiplica-
tively with identity element 1 and associated group of units M×. Let
M∗ = M \M×. We use the usual conventions involving divisibility:

x|yM ⇐⇒ xz = y for some z ∈M.

Definition

If x|y and y|x in M , then x and y are associates.

Let x ∈ M∗. Then we have: (1) prime if whenever x|yz for x, y,
and z in M , then either x|y or x|z. (2) irreducible (or an atom) if
whenever x = yz for x, y, and z in M , then either y ∈M× or z ∈M×.

x prime in M ⇒ x irreducible in M

but not conversely.

Definition

Set A(M) = the set of irreducibles of M . If M∗ =< A(M) >,
thenM is called atomic.

Not all integral domains are atomic. For instance,

Z +XQ[X] = {f(X) ∈ Q[X]|f(0) ∈ Z}.

In this case, X cannot be factored as a product of irreducibles.

X = 2 ·
(

1

2
X

)
= 2 · 3 ·

(
1

6
X

)
= ...
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5. How Things Factor in 1 + 4N0

Lemma

The element x is irreducible in 1 + 4N0 if and only if x is either

• p where p is a prime and p ≡ 1( mod 4), or
• p1p2 where p1 and p2 are primes congruent to 3 mod 4.

x is prime if and only if it is of type 1.

Definition

In general, a monoid with this property, i.e.,

x = α1...αs = β1...βt

for αi and βj in A(M), then s = t, is called half-factorial.

Theorem

There is a map, φ : Z
√
−5→ 1 + 4N0 which preserves lengths of

factorizations into products of irreducibles. It follows Z[
√
−5] is

half-factorial.

Meyerson’s Monoid doesn’t satisfy the half-factorial property: 100000 =
104 = 250 · 10 · 4. And, 250 = 2 · 53 ≡ 4( mod 6) is irreducible in M .

Definition

Let M be an atomic monoid. Define for x ∈ M∗ L(x) = the
longest length of an irreducible factorization of x in M , I(x) =
the shortest length of an irreducible factorization of x in M , and

ρ =
L(x)

I(x)

to be their quotient. ρ(x) is called the elasticity of x.

Definition

ρ(M) = sup{ρ(x)|x ∈M∗}
is called the elasticity of M . If there exists an x ∈ M∗ such

that ρ(M) = ρ(x) = L(x)
I(x)

, then we say that the elasticity of M is

accepted.
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Proposition

(W. Meyerson, 2003)

• If x ∈M , then 1 ≤ ρ(x) < 2.
• ρ(M) = 2

The Punch Line

M is an atomic monoid with elasticity 2 and the elasticity is not
accepted.

6. The Chicken McNugget Problem

What numbers of Chicken McNuggets can be ordered using only
packs with 6, 9, or 20 pieces?

Definition

Positive integers that satisfying the Chicken McNugget problem
are know as McNugget numbers. In particular, if n is a McNugget
number, then there is an ordered triple (a, b, c) of non-negative
integers such that

6a+ 9b+ 20c = n

(a, b, c) is a McNugget expansion of n. Since both (3, 0, 0) and
(0, 2, 0) are McNugget expansions of 18. It’s clear that McNugget
expansions are not unique. This phenomenon will be the central
focus of the remainder of the talk.

The following are positive integers that don’t have McNugget expan-
sion:

1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 22, 23, 25, 28, 31, 34, 37, 43.

Proposition

Any positive integers greater than 43 is a McNuggets number.

So, 43 is the largest McNuggets number we can’t order.

7. Generalization

Given a set of k objects with predetermined values n1, n2, ..., nk,.
WHat possible values of n can have from combinations of these objects?
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Thus if a value of n can be derived, then there is an ordered k-tuple
of nonnegative integers (x1, ..., xk) which satisfy the linear diophatine
equation

n = x1n1 + x2n2 + ...+ xknk.

We view this in a more algebraic manner. Given integers n1, ..., nk > 0,
set

< n1, ..., nk >= {x1n1 + x2n2 + ...+ xknk|x1, ..., xk ∈ N0}.
Monoids of nonnegative integers under addition, like the one above,
are known as numerical monoids, and n1, ..., nk are called generators.
The numerical monoids < 6, 9, 20 > is called the Chicken McNugget
monoid.
Since this talk is a little bit short on time, so the

speaker skipped some slides, and only covered the
following contents:

8. A General Result.

Proposition

Given < n1, n2, ..., nk >, then ρ(< n1, n2, ..., nk >) = nk

n1
.

Proof. Let n ∈< n1, ..., nk > and suppose n = x1n1 + ...+ xkak. Then
n

nk

=
n1

nk

x1 + ...+
nk

nk

xk ≤ x1 + ...+ xk ≤
n1

n1

x1 + ...+
nk

n1

xk =
n

n1

.

It follows that L(n) ≤ n
n1

and l(n) ≥ n
nk

for all n ∈< n1, ..., nk >, from

which ρ(< n1, ..., nk >) ≤ nk

n1
. Also, ρ(< n1, ..., nk >) ≥ ρ(n1nk) = nk

n1
,

so we have equality. �

Proposition

The elasticity of the Chicken McNugget Monoid is 20
6

= 10
3

.
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