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1. Introduction

In this lecture, we explore how the structure of modular representations is refined by decomposing
character sets into blocks. Each block is associated with a subset of irreducible characters, Brauer
characters, and a unique defect group. This gives deep insight into the nature of the decomposition
matrix.

2. Blocks of G

Definition 1 (Block). Let G be a finite group and p a prime dividing |G|. A block B of G is
a primitive idempotent in the center of the group algebra over a suitable modular system. Each
block corresponds to a set of irreducible complex characters Irr(B) ⊆ Irr(G) and a set of Brauer
characters IBr(B) ⊆ IBr(G).

The set of blocks is denoted Bl(G). Every χ ∈ Irr(G) lies in a unique block, and similarly for
ϕ ∈ IBr(G).

3. Block Decomposition Matrix

The decomposition matrix D = (dχϕ) respects the block decomposition. That is:

If χ ∈ Irr(B) and ϕ ∈ IBr(B′), with B ̸= B′, then dχϕ = 0.

Hence, the global decomposition matrix is block-diagonal with each block corresponding to a
separate B ∈ Bl(G).

4. Defect Groups

Definition 2 (Defect Group). Let B ∈ Bl(G). A p-subgroup D ≤ G is called a defect group of
B if it controls the size and complexity of representations in the block. The defect of a character
χ ∈ Irr(B) is defined by:

defG(χ) = n such that χ(1)p =
|G|p
pn

.

The defect group is then a p-subgroup of order pn.
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Remark 1. Blocks with trivial defect groups (i.e., defect 0) contain a single irreducible character,
which is projective. These are called blocks of defect zero.

5. Example: Symmetric Group Sn

Let G = Sn, the symmetric group. The block structure with respect to a prime p is governed by
the partition theory of n, and each block corresponds to a p-core partition.

- The decomposition matrices for Sn are known explicitly for small n and exhibit block structure.
- For instance, for S4 and p = 2, there are 2 blocks: one with defect 2 and one with defect 0.

6. Structure of Decomposition Matrix in a Block

Theorem 1. Let B ∈ Bl(G) be a block with defect group D. Then:

• The number of irreducible Brauer characters in B is equal to the number of isomorphism
classes of simple kG-modules in the block.

• The number of projective indecomposables in B equals the number of IBr(B).

• The decomposition matrix DB of the block B has full rank and is square if and only if the
block is of full defect.

Example 1. Let B be a block with cyclic defect group. Then DB is known to be triangular under
a suitable ordering of rows and columns, and all simple modules are 1-dimensional.

7. Brauer Correspondence and Local Structure

Blocks are intimately connected to local subgroups.

Theorem 2 (Brauer’s First Main Theorem (Sketch)). Each block B ∈ Bl(G) with defect group D
has a unique Brauer correspondent in NG(D), the normalizer of D, denoted BD ∈ Bl(NG(D)),
such that they are “related” via the restriction and induction of characters.

8. Summary

• The decomposition matrix respects block structure: each block corresponds to a submatrix.

• Defect groups quantify the ”size” of blocks and reflect local subgroup structure.

• Blocks of defect zero correspond to projective irreducible characters.

• The study of blocks bridges global representation theory and local subgroup data.
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Next Lecture (Lecture 4 Preview)

In Lecture 4, we will:

• Study Brauer’s three main theorems in detail,

• Investigate the Cartan matrix and its relation to decomposition matrices,

• Discuss the role of the Loewy series and the structure of projective modules.
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