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1 Question

Prove that the size of the Einstein ring, i.e., the Einstein radius, is (in radius)

θE =

√
4GM

c2
DLS

DLDS
. (1)

Figure 1: In general, over cosmological distance DLS 6= DS −DL.
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2 Solution

2.1 Newtonian Derivation Is Juxtaposed With Einstein’s Derivation

2.1.1 Newtonian Derivation

Figure 2: Newtonian Bend Lensing

M denotes point mass, b is impact parameter, θ is the bending angle. Consider the vertical
acceleration:

gy =

(
GM

r2

)(
b

r

)
≤ GM

b2
= gmax. (2)

Figure 3: Vertically gravitational strength versus time.

According to equation (2), Figure 2 and Figure 3, we can calculate the average time as
a photon( or a light pulse, a quanta) go by the point mass, M .

∆t ≈ 2b

Vx
(3)
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Then the vertical velocity can be calculated as follows,

Vy =

∫
gydt (4)

≈ gmax.∆t (5)

≈
(
GM

b2

)(
2b

Vx

)
(6)

=
2GM

bVx
. (7)

Hence the bend angle:

θN ≈ Vy
Vx

(8)

≈ 2GM

bV 2
x

(9)

≈ 2GM

bc2
, (10)

for photon, Vx = c.

2.1.2 Einstein’s Derivation

Set Newton constant G=1. In the Einstein’s equation, we have

Gµν = 8πTµν . (11)

On the right hand side, contains all possible energy and matter, include light. The left
hand side, stands for geometry of the spacetime, is determined by the right. This means
that light gives rise to a gravitational field. In the same manner, light is also affected by
a gravitational field. Now consider in a Schwarzschild spacetime. By using the expression
for relativistic energy:

dτ

dt
=

1− 2M
r

E/m
(12)

where τ is the proper time. For total energy per mass as

∆t =
E/m

1− 2M
r

τ. (13)

Similarly we can use that the angular momentum per massL/m is a constant of motion

L

m
= r2

dφ

dr
(14)
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to get

∆φ =
L/m

r2
∆τ. (15)

In order to derive the radial displacement ∆r, the Schwarzschild proper time(i.e. from
metric) is

∆s2 = ∆τ2 =

(
1− 2M

r

)
∆t2 −

(
1− 2M

r

)−1
∆r2 − r2∆φ2. (16)

Since light is massless, one should take the limit m −→ 0. And, derive that

∆r = ±
(

1− 2M

r

)√
1−

(
1− 2M

r

)
(L/E)2

r2
∆t. (17)

And,

r∆φ = ±L/E
r

(
1− 2M

r

)
∆t. (18)

Insert (13) and (15) into (16), one gets

∆τ2 =

(
1− 2M

r

)(
E/m

1− 2m
r

)2

∆τ2 − ∆r2(
1− 2M

r

) − r2(L/m
r2

)2

∆τ2. (19)

Simplify equation (19),

∆r = ±

√√√√(E
m

)2

−

[
1 +

(
L/m

r

)2
](

1− 2M

r

)
∆τ2. (20)

Equation (20) is not the whole story unless the Taylor expansion w.r.t. τ be considered
to second and more higher order for the case of falling into black holes.

A more easier

way to do

is consider

the effective

potential.

For equation (20), the equation of motion can simply be written into the following form,

A = B~̇x2 + V (x) (21)

where A (equal to E/m in our example) and B (equal to 1/2 in our example) are constants
(B being positive), ~x is the position vector of the object and V (x) is the position dependent
potential. With a caveat : equation (20) can be rewritten as(

dr

dτ

)2

=

(
E

m

)2

−
(

1− 2M

r

)[
1 +

(L/m)2

r2

]
. (22)

Consider angular momentum of the photon

L = |~r × ~p| = rp sinθ = pb (23)
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where b = L/p = L/E which is the impact parameter.

Figure 4: Definition of the impact parameter.

Figure 5: b be expressed in terms of L.

Therefore, b can be written as the ratio between angular momentum, L, and linear
momentum, p.

b =
L

p
. (24)
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For a photon, p = E,

b =
L

E
. (25)

According to equation (25), one can rewrite equation (17) and (18) into

dr

dt
= ±

(
1− 2M

r

)√
1−

(
1− 2M

r

)(
b

r

)2

(26)

And,

r
dφ

dt
= ± b

r

(
1− 2M

r

)
. (27)

One can use the equations of motion for a photon ( see equation (26)) to show that the
radial light speed drshell/dtshell observed by a shell observer can take the following form:

1

b2

(
drshell
dtshell

)2

=
1

b2
−
(
1− 2M

r

)
r2

. (28)

Deflection angle of light by a star is defined as following figure 6:

Figure 6: The dotted line is the direction light would have taken if no star, i.e., no deflection
arise.

In more detail, to see the figure 7 below
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Figure 7: There is a symmetry that can let the situation equal on both side of the point
where the distance between the light beam and the star is minimal r = R and the radial
velocity of the beam is zero.

According to equation of motion of the light in Schwarzschild geometry, i.e. (17)
and (18), one can calculate the deflection angle, ∆φ, by diving each other of these two
equations, then have the following

dφ =
dr

r2
√

1
b2
−
(
1− 2M

r

)
1
r2

. (29)

Integrating (29) ∫ π
2
+∆φ

2

0
dφ =

∫ R

∞

dr

r2
√

1
b2
−
(
1− 2M

r

)
1
r2

. (30)

Let u = R/r, ∫ π
2
+∆φ

2

0
dφ =

1

R

∫ 1

0

du√
1
b2
−
(
u
R

)2 (
1− 2Mu

R

) . (31)
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Consider equation (28), if radial velocity approaches to zero, i.e. on the left hand side,
then one gets the following relation

1

b2
=

(
1− 2M

r

)
r2

. (32)

Then, substitute equation (32) into equation (31)

π

2
+

∆φ

2
=

∫ 1

0

du√(
1− 2M

R

)
− u2

(
1− 2Mu

R

) . (33)

For stars, R � 2M , let x := M/R, x � 1. Then the integrand can be rewritten into the
following form

f(x) =
(
1− 2x− u2(1− 2xu)

)−1/2
, (34)

and considered by Taylor expansion,

f(x) ' f(0) + f ′(0)x (35)

where

f(0) =
1√

1− u2
(36)

and

f ′(0) =
1− u3

(1− u2)3/2
. (37)

Hence

π

2
+

∆φ

2
=

∫ 1

0

du√
1− u2

+
M

R

∫ 1

0

[
1

(1− u2)3/2
− u3

(1− u2)3/2

]
du (38)

=
π

2
+

2M

R
. (39)

Therefore,
∆φ

2
=

2M

R
. (40)

and we have already derived an important results:

∆φ = θE =
4M

R
=

4GM

Rc2
= 2θN . (41)

where θE denotes Einstein’s deflection angle, θN denotes Newton’s deflection angle. This
equation will be reconstructed in equation (53). However, only with the above derivation,
one can really know the origin of the factor “2” in equation (53).
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2.2 Derivation of Einstein Radius

2.2.1 Method I: A Quick Solution

Figure 8: Analogue with Spherical Lens

According to equation (10) and equation (41), one can easily write down

the Einstein bend angle θE =
4GM

bc2
, (42)

and the Focal Length f =
b

θE
=

b2c2

4GM
. (43)

Figure 9: Geometric Optics Derivation of Einstein Ring Radius

By using geometric optics:

1

DS −DL
+

1

DL
=

1

f
=

4GM

c2b2
(44)
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According to equation (44), after simply rearrange the left had side one can easily derive
the following results:

the Einstein radius b = RE =

√
4GM

c2
DLDSL

DS
, (45)

the bend angle θE =
RE
DL

, (46)

=

√
4GM

c2
DSL

DLDS
, (47)

=

(
M

1011.1MSun

)1/2(DLDS/DLS

Gpc

)−1/2
arcsec. (48)

2.2.2 Method II: A Rigorous Way

The effect of spacetime curvature on the light paths can then be expressed in terms of an
effective index of refraction n, which is given by (e.g. Schneider et al. 1992)

n = 1− 2Φ

c2
= 1 +

2|Φ|
c2

, (49)

As in the case of the prism(Shapiro 1964), light rays are deflected when they pass through
a gravitational field. The deflection is the integral along the light path of the gradient of
n perpendicular to the light path, i.e.

α̂ = −
∫ −→
∇⊥ndl =

2

c2

∫ −→
∇⊥Φdl, (50)
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Figure 10: Light deflection by a point mass. Mind that most of the deflection occurs in
the range that ∆z ≈ ±b.

As an example, we now evaluate the deflection angle of a point mass M (cf. figure 10).
The Newtonian potential of the lens is

Φ(b, z) =
−GM

(b2 + z2)1/2
(51)

where b is the impact parameter of the unperturbed light ray, and z indicates distance
along the unperturbed light ray from the point of closest approach. We therefore have

−→
∇⊥Φ(b, z) =

GM

(b2 + z2)3/2
(52)

where ~b is orthogonal to the unperturbed ray and points toward the point mass. Equa-
tion (52) then yields the deflection angle

α̂ =
2

c2

∫ −→
∇⊥Φdz =

4GM

c2b
. (53)

Thus, we reconstruct equation (41) and equation (43) again. The mass distribution of
the lens can then be projected along the line-of-sight and be replaced by a mass sheet
orthogonal to the line-of-sight. The plane of the mass sheet is commonly called the lens
plane. The mass sheet is characterized by its surface mass density

Σ(~ξ ) =

∫
ρ(~ξ, z)dz (54)
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where ~ξ is a two-dimensional vector in the lens plane. The deflection angle at position, ξ,
is the sum of the deflections due to all the mass elements in the plane:

~̂α =
4G

c2

∫
Σ(~ξ′)(~ξ − ~ξ′)
‖~ξ′ − ~ξ‖2

d2ξ′. (55)

Figure 11: If the distance between observer and lens which is larger larger than ∆z than
the spherical star can be squeeze like a “pancake”, i.e. this pancake (thin lens) usually be
called the lens plane. As we project all mass into lens plane, the notation of the impact
parameter, ~b, also change into ~ξ.

In general, the deflection angle is a two-component vector. For some special cases with
circularly symmetric lens, one can shift the coordinate origin to the center of symmetry
and reduce light deflection to a one-dimensional problem. The deflection angle then points
toward the center of symmetry, and its modulus is taken the following form:

α̂(ξ) =
4GM(ξ)

c2ξ
(56)

where ξ is the distance from the lens center and M(ξ) is the mass enclosed within radius
ξ,

M(ξ) = 2π

∫ ξ

0
Σ(ξ′)ξ′dξ′. (57)
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Figure 12: An Illustration of A Gravitational Lens System.

Figure 13: A 3D Illustration
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For the convenient, we introduce the reduced deflection angle:

~α =
DLS

DS

~̂α. (58)

From figure (12) and figure (13) one can see that

∵ θDS = βDS + α̂DLS . (59)

Thus, the positions of the source and the image are related through the simple equation

∴ ~β = ~θ − ~α( ~θ ). (60)

Distances so defined are called angular-diameter distances, and equation (58) and (59) are
valid only when these distances are used. Equation (60) is called the lens equation, or ray-

Note that in

general DLS 6=
DS −DL.

tracing equation. It is nonlinear in the general case, and so it is possible to have multiple
images described by ~θ corresponding to a single source position, denotes ~β. As Figure 12
shows, the lens equation is trivial to derive and requires merely that the following Euclidean
relation should exist between the angle enclosed by two lines and their separation,

Separation = angle× distance. (61)

As an instructive special case consider a lens with a constant surface-mass density. From
equation (56), the reduced deflection angle is

α(θ) =
DLS

DS

4G

c2ξ

(
Σπξ2

)
=

4πGΣ

c2
DLDLS

DS
θ (62)

where we have set ξ = DLθ. In our case, the lens equation is linear; that is, β ∝ θ. Let’s
define a critical surface-mass density

Σcr =
c2

4πG

DS

DLDLS
= 0.35g cm−2

(
D

1Gpc

)−1
. (63)

where the effective distance D is defined as the combination of distances

D =
DLDLS

DS
. (64)

For a lens with a constant surface mass density Σcr, the deflection angle is α(θ) = θ. Thus,
β = 0 for all θ. In optics, a lens in this kind usually focuses perfectly, with a well-dened
focal length( However, in gravitational lensing is not the case. Instead, light rays which pass
the lens at different impact parameters cross the optic axis at different distances behind
the lens and also with different wavelengths.

A lens which has Σ > Σcr somewhere within it is referred to as being supercritical(
here is the definition of supercritical). Usually, multiple imaging occurs only if the lens is
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supercritical, but there are exceptions to this rule (e.g., Subramanian & Cowling 1986).
Consider now a circularly symmetric lens with an arbitrary mass. According to equation 56,
58 and 60, the lens equation have the following form:

β(θ) = θ − DLS

DLDS

4GM(θ)

c2θ
. (65)

Owning to the rotational symmetry of the lens system, a source which lies exactly on
the optic axis, with β = 0, is imaged as a ring if the lens is supercritical. Therefore, after
setting β = 0 in equation (65), and with a simple rearrangement on both sides, we have
already derived the equation (47) again.

θE =

[
4GM(θE)

c2
DLS

DLDS

]1/2
(66)
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A Dictionary For All Critical Physical Quantities And Constants

c velocity of light
G Newton constant
L angular momentum of the star-photon system
n effective index of refraction
Φ the Newtonian potential of the lens
z the distance along the unperturbed light ray from the point of closest approach
DS distance of observer-source
DL distance of observer-lense
DLS distance of lense-source
D effective distance, see equation (64)
RE , b Einstein radius and impact parameter
∆φ deflection angle between incoming and outgoing light(photon)
θE Einstein radius in bend angle expression; Einsteins deflection angle
θE Newtons deflection angle
~ξ a two-dimensional vector in the lens plane,

its modulus, ξ, is the distance from the lens center,
impact parameter in ∆z � DS limit

θ angular distance between image-center
α(θ) apparent angular deflection
α̂ equal to θE , note that the Schwarzschild radius of a point mass is 2GM/c2,

so that the deflection angle is simply twice the inverse of the impact parameter
in units of the Schwarzschild radius. sometimes also called “actual deflection
of the light ray.”

β(θ) angular distance between source-center
Σ surface-mass density
Σcr critical surface-mass density, see equation (63)
MSun mass of the Sun
M(ξ),M(θ) the mass enclosed within radius ξ
η a distance on source plane which is between source-center
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