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1. Affine spaces and Affine transformations

Let V be a R-vector space.

Definition 1. A is an affine subset of V , if A ⊂ V , A = v + U for
some v ∈ V, U ⊂ V .

Definition 2. For v ∈ V and U a subspace of V , the affine subset
v + U is said to be parallel to U .

Definition 3. Let U be a subspace of V . Then the quotient space V/U
is the set of all affine subsets of V parallel to U . In other words,

V/U = {v + U : v ∈ V } .

Addition and scalar multiplication on V/U :

Definition 4. Let U be a subspace of V . Then addition and scalar
multiplication are defined on V/U by

(v + U) + (w + U) = (v + w) + U

λ(v + U) = (λv) + U

for v, w ∈ V and λ ∈ R.

Definition 5. Let lin(X) = {a1(x1 − x0) + ... + am(xm − x0)|n ∈
N, x0, x1, ..., xm ∈ X, a1, ..., am ∈ R}, then lin(X) is the linear hull of
X.
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Definition 6. Let X ⊂ V , then aff(X) := {a1(x1) + ... + am(xm)|n ∈
N, x1, ..., xm ∈ X, a1, ..., am ∈ R, a1 + ...+ am = 1}, and aff(X) is called
the affine hull of X.

Property 1. Let A 6= ∅. A ⊂ V is affine, if and only if λv + (1 −
λ)w ∈ A, ∀v, w ∈ A, and ∀λ ∈ R, i.e., A is closed under affine linear
combinations.
Proof.
“⇒” Given A as an affine subset of V . Assume A = x + U, U ⊂ V,
where x ∈ V . Let v = x+ u1 ∈ A, and w = x+ u2 ∈ A. We also know
(λu1 + (1− λ)u2) ∈ U , since U is also a vector space.

Claim: (λv + (1− λ)w) ∈ A.

Since (λv + (1 − λ)w) = λ(x + u1) + (1 − λ)(x + u2) = λx + λu1 +
x+ u2− λx− λu2 = x+ (λu1 + u2− λu2) = x+ (λu1 + (1− λ)u2) ∈ A.
where (λu1 + (1− λ)u2) ∈ U . It follows that (λv + (1− λ)w) ∈ A.

Furthermore, in general, we have the following:
Since U is a vector subspace of V , so U is closed under linear combi-
nations. Hence, ∀λi ∈ R, we have

∑n
i=1 λiui ∈ U . If we let vi = x+ ui,

where x ∈ A, ui ∈ U , i ∈ {1, 2, ..., n}, and
∑n

i=1 λi = 1, then we have∑n
i=1 λivi =

∑n
i=1(x + ui) =

∑n
i=1 λix +

∑n
i=1 λiui = x +

∑n
i=1 λiui ∈

x+ U .

“⇐” Let (λv + (1− λ)w) ∈ A, ∀v, w ∈ A, and ∀λ ∈ R be given. Want
to show A ⊂ V is affine.

First proof.
Let’s prove a more general case that we are given more than two ele-
ments of A.
Let

∑n
i=1 λixi be given as an affine linear combination, where xi ∈ A.

⇒
∑n

i=1 λixi = v+(
∑n

i=1 λixi)− (
∑n

i=1 λi) v = v+(
∑n

i=1 λi(xi − v)) ∈
v + U . Then by the first definition, i.e., the definition of affine subset,
A must be affine, and this completes the proof.

Second proof.
If we start with defining affine hull, and then proving aff(A) = A, (since
A is affine, and affine hull is the smallest affine set containing A, so
it contains and is equal to itself) then we have one condition for any
element, a ∈ A, in affine set A that it can be represented as an affine
linear combination, a =

∑n
i=1 λixi, where

∑n
i=1 λi = 1, ∀λi ∈ R, and
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xi ∈ A. Then, we can have the following second proof for this direc-
tion. However, if we didn’t prove that first, then we don’t have that
property yet. Because one common approach to prove it is based on
the theorem that we are proving, so it’s important to notice this to
avoid a circular logic, and that’s why we have the first proof. Hence, if
we already proved that aff(A) = A by using the idea in the first prove,
then we can also prove this direction in the following way: To show A
is closed under affine linear combinations.
Furthermore, this is also equivalent to show A−α is a vector subspace
of V where α ∈ A.
That is, we can pick any α ∈ A, and since −α+A is a vector subspace
of V , we check the following properties of vector space:

1. 0 ∈ −α + A, since α ∈ A.

2. we want to check −α + A is closed under scalar multiplication.
Since, ∀λ ∈ R,∀a ∈ A, we have λ(−α + a) = −λα + λa = −α + (α −
λα)+λa = −α+((1−λ)α+λa) ∈ −α+A, hence λ(−α+a) ∈ −α+A.

3. Want to show: −α + A is closed under addition.
Claim: −α+a,−α+ b ∈ −α+A, and α, a, b ∈ A, we check (−α+a) +
(−α + b) ∈ A.
Since (−α+ a) + (−α+ b) = −α+ (−α+ a+ b) where the coefficients
of (−α + a+ b) is (−1 + 1 + 1) = 1.
Alternatively, since we already proved −α + A is closed under scalar
multiplication, so we also have (−α+ a) + (−α+ b) = 2

(
a
2

+ b
2
− α

)
∈

−α + A, and the sum of these coefficients is 1
2

+ 1
2
− 1 = 1.

�

Additionally, by Definition 1, we have aff(A) = A = v + U =
v+lin(A). Therefore, in general, we can summarize the above proof,
and rewrite the above property into the following theorem:

Theorem 7. A subset A of V is an affine subspace if and only if it is
closed under affine linear combinations.

A linear combination can be seen as an affine combination by sub-
stituting 0 with the coefficient 1−

∑
i λi. Additionally, affine combina-

tions are also called barycentric combinations, and λ′is are barycentric
coordinates.

Property 2. Let vi ∈ V , A = {
∑n

i=1 λivi : λi ∈ R, and
∑n

i=1 = 1}.
Then, A is an affine subset of V .
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Proof. Let u =
∑n

i=1 λivi ∈ A, and v =
∑n

i=1 γivi ∈ A. Substitute
u and v into the first property, or by Thm 6, then we obtain: λu +
(1−λ)v = λ(

∑n
i=1 λivi)+(1−λ)(

∑n
i=1 γivi) =

∑n
i=1 (λλi + (1− λ)γi) .

However,
∑n

i=1 (λλi + (1− λ)γi) = λ
∑n

i=1 λi + (1 − λ)
∑n

i=1 γi = λ +
(1 − λ) = 1. Hence, by Thm 6, or the first property, A is affine, and
A ⊂ V. �

Property 3. Let vi ∈ V , A = {
∑n

i=1 λivi : λi ∈ R, and
∑n

i=1 λi = 1}.
Then, A = v + U where v and U are defined as in Definition 1.

To prove A = v + U , since we have proved for each affine linear
combination, i.e., given in the form as the element of the set A, it has
the form:

∑n
i=1 λixi ∈ v + U in Thm 6, so we have proved the “⊆”

direction. Now, let’s prove the other direction.

Proof. Take
∑n

i=1 γi·xi ∈ U , where U is a vector subspace of V . ∃k ∈ R,
and xi ∈ A such that γi = k(xi − v). Thus, v +

∑n
i=1 γixi = v +∑n

i=1 γi(xi− v) = v+ (
∑n

i=1 γixi)− (
∑n

i=1 γi) · v ∈ A. The last equality
holds, since by the given definition of elements in A, the summation
of coefficients is 1 + (

∑n
i=1 γi) − (

∑n
i=1 γi) = 1. This completes the

proof. �

By the above property, we also have:

Property 4. dim(A) = dim(v + U) = dim(U) ≤ n− 1.

Proof. The first equality is obvious, since it’s by the definition of affine
subset. The second property is also obvious since v ∈ A. For the
third inequality, without loss generality, we take v = vk in Definition
1, where k ∈ {1, ..., n}. The idea of the proof is to prove both sides
contain each other:

A = vk + span{v2 − vk, v3 − vk, ..., vn − vk}.

Hence, dim(A) ≤ n− 1. �

Property 5. Let vi ∈ V , A = {
∑n

i=1 λivi : λi ∈ R, and
∑n

i=1 = 1}.
Then, every affine subset of V that contains vi, i ∈ {1, ..., n}, also
contains A.

Proof. In property 3, we have proved A = v + U , in other words,

A =

{
n∑
i=1

λivi : λi ∈ R, and
n∑
i=1

λi = 1

}
= v + U
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and by Definition 1, we know A is affine. Now, since we also have
defined affine hull, and it’s clearly that by Definition 6, the given set
A is an affine hull. Thus, we have A=aff(A) = v+U , and hence aff(A)
is the smallest affine set contains A. Therefore, every affine subset of
V that contains all v′is also contains A. �

Proposition 1. A set X ⊆ Rn is convex, if and only if
∑n

i=1 λixi ∈ X,
∀n ∈ N, xi ∈ X, and 0 ≤ λi ≤ 1, with

∑n
i=1 λi = 1.

Linear combinations in this proposition is called convex linear com-
binations.

Definition 8. The convex hull, conv(X) of a set X ⊆ Rd is the inter-
section of all convex supersets of X.

Property 6. For arbitrary X, the convex hull of X is the union of the
convex hulls of the finite subsets of X.

Definition 9. A subset X of V is convex if contains a line segment
[x, y] = {ax + (1 − a)y : 0 ≤ a ≤ 1} for all points x, y ∈ X. Open or
halfopen line segments (x, y) and (x, y] are defined respectively.

Since every linear map f must send the zero vector to the zero vector,
i.e., f(0) = 0. Nevertheless, ∀u ∈ V , u is nonzero, the function Tu(x) =
x+u,∀x ∈ V is what we usually have to confront in applications. This
type of functions are called translations, and they are not linear for
u 6= 0, because Tu(0) = 0 + u = u.

Functions combining linear maps and translations are what we want
to pay attention to. Hence, it’s good to know more about their prop-
erties.

The conditions in affine combinations that
∑n

i=1 λi ensures that affine
combinations are preserved under translations. Consider f : V → W ,
where V and W are two vector spaces, such that there is some linear
map T : V → W and some fixed vector b ∈ V (a translation vector),
hence we have f(x) = T (x) + b, ∀x ∈ V . The functions of this type
preserve affine combinations.

Proposition 2. The function f preserves affine combinations: f :
V → W , f(x) = T (x) + b,∀x ∈ V , where T : V → W is a linear
map and b is some fixed vector in V , then for every affine combination∑n

i=1 λiui, where
∑n

i=1 λi = 1, we have

f

(
n∑
i=1

λiui

)
=

n∑
i=1

λif (ui) .
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Proposition 3. For any two vector space V,W , let f : V → W be any
function that preserves affine combinations, then for any h ∈ V , the
function T : V → W given by T (x) = f(x+ h)− f(h) is a linear map
independent of h, and f(x + h) = f(x) + f(h), ∀x ∈ V. In particular,
for h = 0, if we let h = f(0), then f(x) = T (x) + h for all x ∈ V .

The point h can be seen as a chosen origin in V , hence the function
f maps the origin h ∈ V to the origin in f(h) ∈ f(V ). Hence, it is
natural to define affine map as follows:

Definition 10. For any two vector spaces V,W , a function f : V → W
is an affine map if f preserves affine linear combinations, i.e., for every
affine linear combination

∑n
i=1 λiui, where

∑n
i=1 λi = 1, we obtain

f

(
n∑
i=1

λiui

)
=

n∑
i=1

λif(ui).

Equivalently, a function α : V → W is an affine map if there is some
linear map T : V → W and some fixed vector h ∈ V such that α(x) =
T (x) + h,∀x ∈ V . Notice that a linear map always maps the standard
origin 0 ∈ V to the standard origin 0 ∈ W , and this is not always the
case for an affine map (unless we take h = 0). Notice that T (x) is also
called a (unique) linear form on V , and the space of linear forms on V
is denoted by V ∗.

We can use affine forms to define the following new notions based on
natural topologies on V w Rd and R.
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2. Polyhedra and their faces

Definition 11. A open halfspace, H>
α , is defined by nonconstant affine

forms α, for all x ∈ V such that α(x) is positive.

H>
α = {x ∈ V : α(x) > 0}.

A closed halfspace, H>
α , is defined by nonconstant affine forms α, for

all x ∈ V such that α(x) is nonnegative.

H+
α = {x ∈ V : α(x) ≥ 0}.

A hyperplane is defined as

Hα = {x ∈ V : α(x) = 0},

Likewise, by symmetry, we also have: H<
α = H>

−α, and H−α = H+
−α.

Definition 12. A subset P ⊂ V is called a polyhedron if it is the
intersection of finitely many closed halfspaces. The dimension of P is
given by dim aff(P ). A d-polyhedron has dimension d.

A polytope is a bounded polyhedron. A 2-polytope is called a poly-
gon.

A morphism of polyhedroa P and Q is a map φ : P → Q that can
be extended to an affine map φ′ : aff(P )→ aff(Q).

For simplicity, H+
αi

is usually written as H+
i , assuming that a suit-

able affine form αi has been chosen to define the halfspace H+
i .

Proposition 4. Let P = H+
1 ∩ ...∩H+

m be a polyhedron. Then aff(P )
is the intersection of those hyperplanes Hi, i = 1, ...,m, that contain P .

Our next goal is to describe the face structure for polyhedra of arbi-
trary dimension.

Definition 13. A hyperplane H is called a support hyperplane of the
polyhedron P if P is contained in one of the two closed halfspaces
bounded by H and H ∩ P 6= ∅.

A facet of P is a face of dimension dimP − 1. The polyhedron P
itself and ∅ are the imporper faces of P .
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Proposition 5. Let P ⊂ V be a polyhedron, and H a hyperplane such
that H ∩ P 6= ∅. Then H is a support hyperplane associated with a
proper face of P if and only if H ∩ P ⊂ ∂P .

Lemma 1. Suppose P = H+
1 ∩ ...∩H+

n is a polyhedron. Then a convex
set X ⊂ ∂P is contained in Hi for some i.

Theorem 14. Let P ⊂ V be a polyhedron such that d = dimP =
dimV . Then the halfspaces H+

1 , ..., H
+
n in an inrredundant represen-

tation P = H+
1 ∩ ... ∩ H+

n are uniquely determined. In fact, the sets
Fi = P ∩Hi, i = 1, ..., n, are the faces of P .

Corollary 1. Let P be a polyhedron.
(a) Then ∂P is the union of the facets of P .
(b) Each proper face of P is contained in a facet.

Proposition 6. Let F be a face of the polyhedron P and G ⊂ F . Then
G is a face of P if and only if it is a face of E.
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3. Finite generation of cones

Proposition 7. For two finitely generated pointed cones C1 and C2,
the set of linear maps C1 −→ C2 is a finitely generated cone in the
appropriate ambient vector space.

Proof. Let I = {1, 2, ...,m}, and J = {1, 2, ..., n}.
C1 =

∑
i∈I R+xi ⊂ V ⊂ Rm, xi ∈ C1.

�

Proposition 8. For two finitely generated pointed cones C1 and C2,
the set of linear maps C1 −→ C2 is a finitely generated cone in the
appropriate ambient vector space.

Proof. Let I = {1, 2, ...,m}, and J = {1, 2, ..., n}. We also letC1 =∑
i∈I R+xi ⊂ V ⊂ Rm, xi ∈ C1, and dimC1 = dimV = m.

On the other hand, for the target set, we have C2 = ∩i∈JH+
αj
⊂ W ⊂

Rn, and dimC2 = dimW = n.

We then define the set of all linear maps from C1 to C2 as follows:

Lin(C1, C2) = {f : C1 −→ C2, f is linear}.
Then we can denote the ambient space as Lin(C1, C2) ⊂ Lin(V,W ).
Next, let’s define an evaluation map ψαj ,xi

Lin(C1, C2) R+

f αj(f(xi))

φαj,xi

φαj,xi

That is, φαj(f(xi)) = (φαj ◦ f)(xi) = αj(f(xi)).
Further, we know αj(f(xi)) ≥ 0, where xi ∈ C1, f(xi) ∈ C2, f ∈

Lin(C1, C2), and αj(f(xi)) ∈ R+. Hence, we have

Lin(C1, C2) = ∩i∈I,j∈J{f |φαj ,xi(f)≥0}

= ∩i∈I,j∈J {f(xi) ∈ C2|αj(f(xi)) ≥ 0, wherexi ∈ C1}

:= ∩i∈I,j∈JH+
αj ,xi

.
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Therefore, by the definition of cones, Lin(C1, C2) is a cone The
above equality will be proved in a more general case Hom(P,Q) =
∩i∈I,j∈JH+

αj ,xi
in the following. �

Theorem 15. The set Lin(C1, C2) is pointed.

Proof. Assume to the contrary, y 6= 0, and y,−y ∈ Lin(C1, C2). Take
∀x ∈ C1. Then y(x) ∈ C2, −y(x) ∈ C2 by the definition of Lin(C1, C2).
However, this contradicts to the fact that C2 is also pointed. �

Definition 16. Define Hom(P,Q) = {f : P → Q| f is affine. } is a
polytope in an appropriate ambient space. Also, Define4n = conv (0, e1, e2, ..., en).

Theorem 17. The set Lin(Rn
+, C) ∼= Cn.

Proof. Define an evaluation map φ:

HomLin(Rn
+, C) Cn

f (f(e1), f(e2), ..., f(en))

φ

φ

Since φ(f +g) = ((f +g)(e1), (f +g)(e2), ..., (f +g)(en)), and φ(f)+
φ(g) = (f(e1), f(e2), ..., f(en))+(g(e1), g(e2), ..., g(en)) = ((f+g)(e1), (f+
g)(e2), ..., (f + g)(en)) = φ(f + g). Likewise, we have φ(f · g) =
φ(f) · φ(g).

To show this map is injective, since linear maps f and g are uniquely
determined by basis (they are restricted maps), so φ is injective.

To show this map is surjective we takeX ∈ Cn, then for some xj ∈ C,
we have

X = (x1, x2, ..., xn) .

There is f ∈ HomLin(Rn
+, C) such that

φ(f) = X = (x1, x2, ..., xn+1) = (f(e1), ..., f(en)).

Therefore, for all X ∈ Cn+1, there exists f ∈ Hom(Rn
+, C) such that

f(ej) = xj.
�
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4. Hom-polytopes

Theorem 18. The set Hom(Mn, P ) ∼= P n+1 is pointed.

Proof. This follows the fact that dim(Hom(4n, P )) = dim(4n) dim(P )+
dim(P ). Hence in Hom(4n, P ), we have vi, i ∈ {1, 2, ..., n+1} vertices.
Then for any affine map f : 4n → P is uniquely defined by the basis
and its restriction map:

f |vert(4n).

Then, we can define the evaluation map (which is a mutually inverse
affine map) as follows:

Hom(4n, P ) P n+1

f Πn+1
i=1 f(vi)

φ

φ

and

P n+1 Hom(4n, P )

Πn+1
j=1xj z

φ−1

φ−1

Since any map vert(4n)→ P extends uniquely to an affine map4n →
P . Hence, the mutually inverse affine map could be derived as follows

φ−1 : Πn+1
j=1xj 7→ f

where this f satisfies the restriction condition f(vi) = xi so it is
uniquely defined on 4n.

�

Lemma 1. If affine spaces A ⊂ V,A′ ⊂ V ′, then aff(A,A′) should be
an affine subspaces of vector space aff(V, V ′).

Proof. Clearly, aff(V, V ′) is a vector space (0 ∈ aff(V, V ′), closed
under addition and scalar multiplication).
Let A = U + x and A′ = W + y0, U ⊂ V , W ⊂ V ′. Let πU : V → U
be linear projection mapping, and π : V → A be the affine projection
(π2 = π).
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Let θ : A′ → V ′ be the identity embedding, then the embedding

aff(A,A′) aff(V, V ′)

f θ ◦ f ◦ π

φ

φ

makes aff(A,A′) into an affine subspace of aff(V, V ′). �

Theorem 19. If affine spaces A ⊂ V,A′ ⊂ V ′, then aff(A,A′) should
have dimension dim(aff(A,A′)) = dim(A) dim(A′) + dim(A′).

Proof. Let Lin(U,W ) = {g : U → W, }, B be the basis of Lin(U,W ), C
be the basis of W , and Ω be the vector space spanned by B ∪ C where
y0 /∈ Lin(U,W ).
We also let

y0 ∈ V ′,

W ⊂ V ′,

A′ = y0 +W,

and finally
f(u) ∈ A′ = W + y0.

We want to show: Ω + y0 = aff(A,A′)

• “⊆” Let f(u) + f(w + y0) ∈ Ω + y0. f extends to a linear map:
V → V ′. w + y0 ∈ V ′. It follows that f(u) + f(w + y0) ∈
aff(A,A′).
• “⊇” Let f(x) + k ∈ aff(A,A′)⇒ f(x) + k is the restriction of
an affine map V → V ′.

f(x) + k = f(u+ x0) + k = f(u) + f(x0) + k.

Since f(0) = 0, f(x0) + k ∈ A′. Hence f(x) + k ∈ Ω + y0.
Resulting form the notion of linear algebra: dim(Lin(V,W )) =
dim(U) dim(W ) = dim(A) dim(A′).

Therefore, #(B ∪ C) = dim(A) dim(A′) + dim(A′), as promised.
�

Theorem 20. dim(Hom(P,Q)) = dim(P ) dim(Q) + dim(Q).
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Proof. Since the interior of the Hom-polytope int(Hom(P,Q)) = ∩αj ,xi{f(xi ∈
Q)|αj(f(xi) > 0)} = ∩αj ,xi{f ∈ aff(P,Q)|φαj(f(xi) > 0)} is nonempty
and open, hence it’s fully dimentional. Based on the above result, since
Hom(P,Q) is full-dimensional, hence

dim(Hom(P,Q)) = dim(aff(P,Q)) = dim(P ) dim(Q) + dim(Q).

�

Definition 21. Let P and Q are polytoptes, i.e., they are convex sets.
Then Hom(P,Q) := {g : P → Q|g is affine },
aff(P,Q) := {g : aff(P )→ aff(Q)|g is affine },
and aff(P ) := {

∑n
i=1 λixi|n ∈ N, xi ∈ X ⊂ V, V is an R− vector sapce, λi ∈

R,
∑n

i=1 = 1}.

Proposition 9. Hom(P,Q) = ∩αj ,xi{g ∈ aff(P,Q)|φαj ,xi(g) ≥ 0}.

• “⊆”

Proof. Since f ∈ Hom(P,Q), αj : aff(Q)→ R, and αj(f(xi)) ≥
0, thus f ∈ ∩H+

αj
. �

• “⊇” consider this direction as a lemma as follows:

Lemma 2. Given: f : aff(P )→ aff(Q) such that αj(f(xi)) ≥
0, ∀j, i where 1 ≤ i ≤ m, and 1 ≤ j ≤ n.
f(P ) ⊆ Q. That is, to show ∀x ∈ P ⇒ f(x) ∈ Q, where
P = conv(x1, x2, ..., xn), and x = λ1x1 + λ2x2 + ...+ λnxn with
λi ∈ R+,

∑n
i=1 λi = 1.

Proof. Define the following evaluation map:

aff(P,Q) R

g αj(g(xi))

φαj,xi

φ

f(x) = λ1f(x1) + λ2f(x2) + λ3f(x3) + ...+ λnf(xn)

αj(f(x)) = λ1αj(f(x1))+λ2αj(f(x2))+λ3αj(f(x3))+ ...+λnαj(f(xn))

where each term αj(f(xi)) ≥ 0 by definition, and λi ∈ R+, and
this completes the proof. �
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Theorem 22. Hom(P,Q) = ∩αj ,xiH+
φαi,xi

⊂ aff(P,Q)

Proof. Proof by contradiction. If the claim is not true, and we pick a
point z in Hom(P,Q), then by the definition Hom(P,Q) := {f : P →
Q|f is affine }, and aff(P,Q) := {f : aff(P )→ aff(Q)| f is affine }.
Since P ⊂ aff(P ) and Q ⊂ aff(Q), hence z ∈ aff(P,Q). �

Theorem 23. If f(P ) ⊂ Q, then Hom(P,Q) = ∩αj ,xiH+
φαi,xi

is bounded.

Proof. Proof by contradiction.
Assume to the contrary, the set is unbounded. WLOG, assume the set
is unbounded on positive x1-axis direction. Then, along the positive
x1-axis, we pick a sequence {fn}, ∀fi ∈ Hom(P,Q).
Denote the origin as O which is also the zero function of the set that
might not be in Hom(P,Q).
Then, d(f1, O) =‖ f1 ‖= supt∈P |f1(t)|,
d(f1, O) =‖ f1 ‖= supt∈P |f1(t)|,
d(f2, O) =‖ f2 ‖= supt∈P |f2(t)|,
d(f3, O) =‖ f3 ‖= supt∈P |f3(t)|,
.........
d(fn, O) =‖ fn ‖= supt∈P |fn(t)|,
.........
and so on.
However, we have the given condition f(P ) ⊂ Q, since Q is a bounded
polytope, so when we take n to infinity, we can have infinitely many
fi with supt∈P |fi(t)| all equal to the maximum of the absolute value
of the distance of the point within the set f(P ) which is contained the
polytope Q to the origin in the ambient space of Q, and let’s denote it
as α.
Then there exists N ∈ N, such that ∀n > N , we have ‖ fn ‖= α.
Thus, α should be the limit point of the sequence (evaluated in P ) of
(fn), since Hom(P,Q) is unbounded along this line, then this α should
be in the set Hom(P,Q). Likewise, not only in this positive x1-axis
direction, Hom(P,Q) has all of its limit points since Q is bounded, and
f(P ) ⊂ Q. Then, Hom(P,Q) is closed and bounded (by α which is the
largest value of the supremum norm of the function, i.e., the distance
between the function fn to the zero function (which sits in the ambient
space) is bounded), and this leads to a contradiction. Therefore, the
assumption is false, and Hom(P,Q) is bounded.

�
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In the following, let’s only consider convex polytopes. Hence, all
polytopes are the compact intersections of finitely many affine half-
spaces, or equivalently the convex hulls of finitely many points.

For two polytopes in their ambient vector spaces P ⊂ V and Q ⊂ W ,
their join is defined by

joint(P,Q) = conv[(P, 0, 0) ∪ (0, Q, 1)]

= conv{(x, 0, 0), (0, y, 1)|x ∈ P, y ∈ Q} ⊂ V ⊕W ⊕ R
where V ⊕W ⊕ R = V ×W × R.

Let ιP and ιQ be the embeddings of P and Q into join(P,Q). Every
point z ∈ join(P,Q) can be uniquely represented as z = λιP (x) +
(1 − λ)ιQ(y), λ ∈ [0, 1]. Then, for two affine maps g : P → R and
h : Q→ R we have the affine map:

φ : join(P,Q)→ R,

where

λ(ιP (x)) + (1− λ)(ιQ(y)) 7−→ λg(x) + (1− λ)h(y),

and λ ∈ [0, 1], x ∈ P, y ∈ Q.

Definition 24. Two polytopes P ⊆ V and Q ⊆ W are affinely iso-
morphic, written as P ' Q, if ∃f : V −→ W , where f is affine, and f
is a bijective map between the points of the two polytopes.

Proposition 10. Hom(join(P,Q), R) ∼= Hom(P,R) ' Hom(P,R)×
Hom(Q,R).

Proposition 11.

Hom(P,Q1 ×Q2) ' Hom(P,Q1)×Hom(P,Q2)
Proof.

1. Check: α : f 7→ (g, h) is surjective
Take c = (g, h) ∈ Hom(P,Q1) × Hom(P,Q2), then by the definition
of tensor product, and the definition of Hom(P,Qi) that each point in
this set is an affine map defined on the domain P , so there exists t ∈ P
as a parameter of each point in Hom(P,Qi).
Then, for each t ∈ P , we have g(t) ∈ Q1, g ∈ Hom(P,Q1). Similarly,
we also have h(t) ∈ Q2, where g ∈ Hom(P,Q2).
Hence, we can put everything together c(t) = (g, h)(t) = (g(t), h(t)),
where (g, h) ∈ Hom(P,Q1)×Hom(P,Q2), and (g(t), h(t)) ∈ Q1 ×Q2,
for any t in P , i.e., for any c evaluated at t ∈ P .
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Thus, by using (g(t), h(t)) ∈ Q1 ×Q2, since t ∈ P , by using this prop-
erty, we can find f ∈ Hom(P,Q1×Q2) where f is also parametrized by
the same single parameter t ∈ P . Since f is a function map to Q1×Q2,
and since the input is specified as t ∈ P , hence f(t) = (g(t), h(t)) ∈
Q1 ×Q2. Therefore, the map α : f 7→ (g, h) is surjective.

2. Check: α : f 7→ (g, h) is injective
If (g1(t), h1(t)) 6= (g2(t), h2(t)), then since α(fi(t)) = (gi(t), hi(t)),
where gi ∈ Hom(P,Q1), hi ∈ Hom(P,Q2), fi ∈ Hom(P,Q1 × Q2),
so we have α(f1(t)) 6= α(f2(t)), and this implies f1(t) 6= f2(t). Hence,
α is injective.
3. Check: Given f is affine, check g, h, and α are all affine

maps
Since P , Q1, and Q2 are polytopes, so there are all affine spaces, and
for t ∈ P , we can write it in affine combination t =

∑n
i=1 aixi.

Based on the previous two proofs of bijection, we have the bijection
between a point f in Hom(P,Q1 × Q2) and (g, h) ∈ Hom(P,Q1) ×
Hom(P,Q2), where both are evaluated at t inP . Hence, again, we can
write f = (g, h).
Then, when f is evaluated at t, on the left-hand-side, we have f(t) =
f(
∑n

i=1 aixi) =
∑n

i=1 aif(xi). Likewise, on the right-hand-side, (g, h) =
f , so

(g, h)(t) = (g, h)(
n∑
i=1

aixi) =
n∑
i=1

ai(g, h)(xi) =
n∑
i=1

ai(g(xi), h(xi)).

Since (g, h)(t) = (g(t), h(t)), hence, by the above result, we know
g(t) =

∑n
i=1 aig(xi), and h(t) =

∑n
i=1 aih(xi), thus g and h are affine.

Furthermore, since α(f(t)) = (g, h)(t), and from the above, we have
(g, h)(t) = f(t) which is affine, hence α(f(t)) is also affine.

4. Check: α is affine isomorphism
Since in “3” we have checked α is affine, and in “1” and “2” we have
proved α is a bijection. So we only need to check the following claim:

α(f1 + f2) = α(f1) + α(f2).

Since α((f1 + f2)(t)) = ((g1, h1) + (g2, h2))(t) = (g1 + g2, h1 + h2)(t) =
(g1(t)+g2(t), h1(t)+h2(t)) = (g1(t), h1(t))+(g2(t), h2(t)) = (g1, h1)(t)+
(g2, h2)(t) = α(f1(t)) + α(f2(t)). Therefore, based on all above proofs,
α is affine isomorphism.

�
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