NUMBER THEORY HOMEWORK 2: A CONJECTURE ON REPUNIT NUMBERS

WILL CHUANG

Data collecting

- $R_1 = 1.$ $\rightarrow \gcd(R_1, R_1) = R_1.$
- $R_2 = R_1 \cdot 11.$ $\rightarrow \gcd(R_2, R_2) = R_2.$ $\rightarrow \gcd(R_2, R_1) = R_1.$
- $R_3 = 3 \cdot 37.$ $\rightarrow \gcd(R_3, R_3) = R_3.$ $\rightarrow \gcd(R_3, R_2) = R_1.$ $\rightarrow \gcd(R_3, R_1) = R_1.$
- $R_4 = R_2 \cdot 101.$ $\rightarrow \gcd(R_4, R_4) = R_4.$ $\rightarrow \gcd(R_4, R_3) = R_1.$ $\rightarrow \gcd(R_4, R_2) = R_2.$ $\rightarrow \gcd(R_4, R_1) = R_1.$
- $R_5 = 41 \cdot 271.$ $\rightarrow \gcd(R_5, R_5) = R_5.$ $\rightarrow \gcd(R_5, R_4) = R_1.$ $\rightarrow \gcd(R_5, R_3) = R_1.$ $\rightarrow \gcd(R_5, R_2) = R_1.$ $\rightarrow \gcd(R_5, R_1) = R_1.$
- $R_6 = R_2 \cdot R_3 \cdot 7 \cdot 13.$ $\rightarrow \gcd(R_6, R_6) = R_6.$ $\rightarrow \gcd(R_6, R_5) = R_1.$ $\rightarrow \gcd(R_6, R_4) = R_2.$ $\rightarrow \gcd(R_6, R_3) = R_3.$ $\rightarrow \gcd(R_6, R_2) = R_2.$

 $\rightarrow \gcd(R_6, R_1) = R_1.$

Conjecture 1 (If $n \mid m$.)

For example, $gcd(R_6, R_3) = R_3$.

Claim: If $n \mid m$, then $R_n \mid R_m \Rightarrow \gcd(R_n, R_m) = R_{\gcd(n,m)}$.

In other words, suppose for all n as a divisor of m, the greatest common divisor of R_n and R_m is equal to R_n , and n = gcd(n, m).

Proof. Rewrite repunit number as a series:

$$R_k = \sum_{i=0}^{k-1} 10^i$$

Since $n \mid m$, so \exists an integer a such that m = an. Thus we have

$$R_m = R_{an} = \sum_{i=0}^{an-1} 10^i$$

which has an terms that starts from 10^0 to 10^{an-1} . Since a and n are integers, so we can rearrange these finite an term into n columns and a rows such as

$$\sum_{i=0}^{an-1} 10^{i}$$

$$= 10^{0} + 10^{1} + 10^{2} + \dots + 10^{n-1}$$

$$+ 10^{n} + 10^{n+1} + 10^{n+2} + \dots 10^{2n-1}$$

$$+ \dots + 10^{(a-1)n} + \dots + 10^{an-1}$$

then we can use the first row to multiply the first term in each row to build all the original rows:

$$= (10^{0} + 10^{1} + 10^{2} + ... + 10^{n-1}) \cdot (10^{0} + 10^{n} + + 10^{(a-1)n}).$$

Why it's good to factor R_{m} as above? Because $10^{0} + 10^{1} + 10^{2} + ... + 10^{n-1}$
is R_{n} , and this completes the proof!

NUMBER THEORY HOMEWORK 2: A CONJECTURE ON REPUNIT NUMBER ${\bf 3}$

Summary

Since by combining the fact that $R_n | R_n$ with the above proved conjecture–"if n | m, then $R_n | R_m$ ", then by definition of the greatest common divisor, we have if n | m, then $gcd(R_n, R_m) = R_n$.

Then since $n \mid n$, so combine the proof of the Conjecture 1, and by definition of the greatest common divisor, we obtain: If $n \mid m$, rad(n, m) = n, then rad(R, R) = R = R.

If $n \mid m$, gcd(n,m) = n, then $gcd(R_n, R_m) = R_n = R_{gcd(n,m)}$.

Conjecture 2 (If n/m.)

For instance, $gcd(R_6, R_4) = R_2$.

Suppose $d = \gcd(n, m)$, if $n \not\mid m$, then there are two cases: (i) d = 1, and (ii) $d \neq 1$. **Claim:** Either way, if d = 1, or $d \neq 1$, $\gcd(R_n, R_m) = R_d$.

Proof. According to the above conjecture, there are two cases:

• Case 1. d = 1.

Since d = 1, so $d \mid R_m$, and $d \mid R_n$.

In the (visionary) proof in Conjecture 1, this means: for R_m we can only write the series in m rows with 1 column, which means each row only has one term, and each term is built by using $10^0 = 1$. Likewise, for R_n , we can only write the series in n rows with 1 column.

• Case 2. $d \neq 1$.

By using the proof of the Conjecture 1, the series

$$R_m = \sum_{i=0}^{m-1} 10^i$$

could be rearranged into m/d rows, and d columns, and this could also be applied to R_n (i.e., n/d rows with d columns).

WILL CHUANG

• According to the above two cases, for every d = gcd(m, n), $R_d \mid R_m$, and, $R_d \mid R_n$. Then by definition of greatest common divisor, $R_d = R_{\text{gcd}(m,n)} = \text{gcd}(R_n, R_m)$. This completes the proof!

4