NUMBER THEORY HOMEWORK 2: A CONJECTURE ON REPUNIT NUMBERS

WILL CHUANG

Data collecting

- $R_{1}=1$.
$\rightarrow \operatorname{gcd}\left(R_{1}, R_{1}\right)=R_{1}$.
- $R_{2}=R_{1} \cdot 11$.
$\rightarrow \operatorname{gcd}\left(R_{2}, R_{2}\right)=R_{2}$.
$\rightarrow \operatorname{gcd}\left(R_{2}, R_{1}\right)=R_{1}$.
- $R_{3}=3 \cdot 37$.
$\rightarrow \operatorname{gcd}\left(R_{3}, R_{3}\right)=R_{3}$.
$\rightarrow \operatorname{gcd}\left(R_{3}, R_{2}\right)=R_{1}$.
$\rightarrow \operatorname{gcd}\left(R_{3}, R_{1}\right)=R_{1}$.
- $R_{4}=R_{2} \cdot 101$.
$\rightarrow \operatorname{gcd}\left(R_{4}, R_{4}\right)=R_{4}$.
$\rightarrow \operatorname{gcd}\left(R_{4}, R_{3}\right)=R_{1}$.
$\rightarrow \operatorname{gcd}\left(R_{4}, R_{2}\right)=R_{2}$.
$\rightarrow \operatorname{gcd}\left(R_{4}, R_{1}\right)=R_{1}$.
- $R_{5}=41 \cdot 271$.
$\rightarrow \operatorname{gcd}\left(R_{5}, R_{5}\right)=R_{5}$.
$\rightarrow \operatorname{gcd}\left(R_{5}, R_{4}\right)=R_{1}$.
$\rightarrow \operatorname{gcd}\left(R_{5}, R_{3}\right)=R_{1}$.
$\rightarrow \operatorname{gcd}\left(R_{5}, R_{2}\right)=R_{1}$.
$\rightarrow \operatorname{gcd}\left(R_{5}, R_{1}\right)=R_{1}$.
- $R_{6}=R_{2} \cdot R_{3} \cdot 7 \cdot 13$.
$\rightarrow \operatorname{gcd}\left(R_{6}, R_{6}\right)=R_{6}$.
$\rightarrow \operatorname{gcd}\left(R_{6}, R_{5}\right)=R_{1}$.
$\rightarrow \operatorname{gcd}\left(R_{6}, R_{4}\right)=R_{2}$.
$\rightarrow \operatorname{gcd}\left(R_{6}, R_{3}\right)=R_{3}$.
$\rightarrow \operatorname{gcd}\left(R_{6}, R_{2}\right)=R_{2}$.

$$
\rightarrow \operatorname{gcd}\left(R_{6}, R_{1}\right)=R_{1} .
$$

Conjecture 1 (If $n \mid m$.)

For example, $\operatorname{gcd}\left(R_{6}, R_{3}\right)=R_{3}$.

Claim: If $n \mid m$, then $R_{n} \mid R_{m} \Rightarrow \operatorname{gcd}\left(R_{n}, R_{m}\right)=R_{\operatorname{gcd}(n, m)}$.

In other words, suppose for all n as a divisor of m, the greatest common divisor of R_{n} and R_{m} is equal to R_{n}, and $n=\operatorname{gcd}(n, m)$.

Proof. Rewrite repunit number as a series:

$$
R_{k}=\sum_{i=0}^{k-1} 10^{i}
$$

Since $n \mid m$, so \exists an integer a such that $m=a n$.
Thus we have

$$
R_{m}=R_{a n}=\sum_{i=0}^{a n-1} 10^{i}
$$

which has an terms that starts from 10^{0} to $10^{a n-1}$. Since a and n are integers, so we can rearrange these finite an term into n columns and a rows such as

$$
\begin{gathered}
\sum_{i=0}^{a n-1} 10^{i} \\
=10^{0}+10^{1}+10^{2}+\ldots+10^{n-1} \\
+10^{n}+10^{n+1}+10^{n+2}+\ldots 10^{2 n-1} \\
+\ldots \ldots \\
+10^{(a-1) n}+\ldots \ldots \ldots \ldots .+10^{a n-1}
\end{gathered}
$$

then we can use the first row to multiply the first term in each row to build all the original rows:
$=\left(10^{0}+10^{1}+10^{2}+\ldots+10^{n-1}\right) \cdot\left(10^{0}+10^{n}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+10^{(a-1) n}\right)$.
Why it's good to factor R_{m} as above? Because $10^{0}+10^{1}+10^{2}+\ldots+10^{n-1}$ is R_{n}, and this completes the proof!

Summary

Since by combining the fact that $R_{n} \mid R_{n}$ with the above proved conjecture- "if $n \mid m$, then $R_{n} \mid R_{m}$ ", then by definition of the greatest common divisor, we have if $n \mid m$, then $\operatorname{gcd}\left(R_{n}, R_{m}\right)=$ R_{n}.
Then since $n \mid n$, so combine the proof of the Conjecture 1, and by definition of the greatest common divisor, we obtain:
If $n \mid m, \operatorname{gcd}(n, m)=n$, then $\operatorname{gcd}\left(R_{n}, R_{m}\right)=R_{n}=R_{\operatorname{gcd}(n, m)}$.

Conjecture 2 (If n / m.)

For instance, $\operatorname{gcd}\left(R_{6}, R_{4}\right)=R_{2}$.

Suppose $d=\operatorname{gcd}(n, m)$, if $n \nmid m$, then there are two cases:
(i) $d=1$, and
(ii) $d \neq 1$.

Claim: Either way, if $d=1$, or $d \neq 1, \operatorname{gcd}\left(R_{n}, R_{m}\right)=R_{d}$.

Proof. According to the above conjecture, there are two cases:

- Case 1. $d=1$.

Since $d=1$, so $d \mid R_{m}$, and $d \mid R_{n}$.
In the (visionary) proof in Conjecture 1, this means: for R_{m} we can only write the series in m rows with 1 column, which means each row only has one term, and each term is built by using $10^{0}=1$. Likewise, for R_{n}, we can only write the series in n rows with 1 column.

- Case 2. $d \neq 1$.

By using the proof of the Conjecture 1, the series

$$
R_{m}=\sum_{i=0}^{m-1} 10^{i}
$$

could be rearranged into m / d rows, and d columns, and this could also be applied to R_{n} (i.e., n / d rows with d columns).

- According to the above two cases, for every $d=\operatorname{gcd}(m, n)$, $R_{d} \mid R_{m}$, and, $R_{d} \mid R_{n}$. Then by definition of greatest common divisor, $R_{d}=R_{\operatorname{gcd}(m, n)}=\operatorname{gcd}\left(R_{n}, R_{m}\right)$. This completes the proof!

