NUMBER THEORY HOMEWORK 1

WILL CHUANG

3.4 - 18

Proof:

Suppose $d = \gcd(a, b)$, i.e. $d \neq 0$, and \exists some $l, m \in \mathbb{Z}$ s.t. a = dl, b = dm

• Claim: $lcm(a, b) \leq \frac{ab}{d}$.

$$\Rightarrow ab = d^2lm = a(dm) = b(dl).$$

It follows that:

$$\frac{ab}{d} = am \Rightarrow a \mid \frac{ab}{d}$$

and

$$\frac{ab}{d} = bl \Rightarrow b \mid \frac{ab}{d}$$
.

Since lcm(a, b) means the *least* common multiple, thus if

$$a \mid \frac{ab}{d}$$
 and $b \mid \frac{ab}{d}$

then

$$lcm(a,b) \mid \frac{ab}{d}$$

and this implies

$$(1) lcm(a,b) \le \frac{ab}{d}.$$

• Claim: $lcm(a, b) \ge \frac{ab}{d}$. By the definition of the least common multiple, $a \mid lcm(a, b)$. Hence, we multiply b on the both sides

$$ab \mid lcm(a,b)b$$

$$\Rightarrow ab \mid lcm(a,b)dm$$

$$\Rightarrow \frac{ab}{d} \mid lcm(a,b)m$$
1

2

Thus,

$$\frac{ab}{d} \mid lcm(a, b)$$

which implies

(2)
$$lcm(a,b) \ge \frac{ab}{d}.$$

- By equations (1) and (2), we complete the proof.
- **3.1–28** Since $a \mid b \Rightarrow \exists k \in \mathbb{N} \ s.t.b = ka$.
 - Base case. For $k = 1 \Rightarrow a = b \Rightarrow a \mid b \Rightarrow F_a \mid F_b$. Thus, the statement holds.
 - Inductive Case.

Suppose when $k = k', k' \in \mathbb{N}$ the statement is true.

That is assume $a \mid ka \Rightarrow F_a \mid F_{ka} \Rightarrow \exists l \in \mathbb{Z} \text{ s.t. } F_{ka} = lF_a$. Proof:

For k = k' + 1

$$\Rightarrow F_{(k'+1)a} = F_{k'a+a}$$

$$\Rightarrow = F_{k'a}F_{a+1} + F_{k'a-1}F_a$$

$$\Rightarrow = F_a(lF_{a+1} + F_{k'a-1})$$

$$\Rightarrow F_a \mid F_a(lF_{a+1} + F_{k'a-1})$$

Therefore, by induction $F_a \mid F_b$, and this completes the proof.

Theorem 1. 2.2.2 The Well-Ordering Principle Every nonempty set of positive integers has a smallest element.

Theorem 2. 2.2.3 Corollary

Let S be a nonempty set of integers, and suppose there exists an integer m s.t for every $s \in S$, $s \ge m$. Then S has a smallest element.

Definition 3. The Fibonacci sequence $F_1, F_2, ...$ is defined by $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$, $n \le 3$.

Lemma 1. For any natural number n, $\phi^n < F_{n+2} < \phi^{n+1}$.

Definition 4. 3.1.1 Let $a, d \in \mathbb{Z}$. We say that d divides a if $\exists q \in \mathbb{Z}$ s.t. a = qd. We express this in symbols as $d \mid a$ (which is read d divides a).

Lemma 2. Let d, a be natural numbers. If $d \mid a$, then $1 \le d \le a$.

Lemma 3. Let $d, m, x, y \in \mathbb{Z}$ If $d \mid x$ and $d \mid y$, then $d \mid mx + ny$.

Theorem 5. Given any rational numbers r, there exists two relatively prime integers p and q, with $q \neq 0$, s.t. $r = \frac{p}{q}$.

Definition 6. gcd

Definition 7. lcm

Theorem 8 (The Division Theorem). Let $a \in \mathbb{Z}$, and $b \in \mathbb{N}$. Then \exists unique integers q and r s.t. a = qb + r.

Lemma 4. Let a, b, x be integers s.t. a, b are nonzero. If $a \mid x, b \mid x$, then $lcm(a, b) \mid x$.